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A B S T R A C T   

Anaerobic digestion (AD) is a promising method for the recovery of resources and energy from organic wastes. 
Correspondingly, AD modelling has also been developed in recent years. The International Water Association 
(IWA) Anaerobic Digestion Model No. 1 (ADM1) is currently the most commonly used structured AD model. 
However, as substrates become more complex and our understanding of the AD mechanism grows, both sys
tematic and specific modifications have been applied to the ADM1. Modified models have provided a diverse 
range of application besides AD processes, such as fermentation and biogas upgrading processes. This paper 
reviews research on the modification of the ADM1, with a particular focus on processes, kinetics, stoichiometry 
and parameters, which are the major elements of the model. The paper begins with a brief introduction to the 
ADM1, followed by a summary of modifications, including extensions to the model structure, modifications to 
kinetics (including inhibition functions) and stoichiometry, as well as simplifications to the model. The paper 
also covers kinetic parameter estimation and validation of the model, as well as practical applications of the 
model to a variety of scenarios. The review highlights the need for improvements in simulating AD and biogas 
upgrading processes, as well as the lack of full-scale applications to other substrates besides sludge (such as food 
waste and agricultural waste). Future research directions are suggested for model development based on detailed 
understanding of the anaerobic treatment mechanisms, and the need to recover of valuable products.   

1. Introduction 

Anaerobic digestion (AD) is a biological process that converts 
biodegradable organic wastes into biogas, making it a well-established 
technology for the treatment of organic wastes and a proven method 
for producing renewable and clean energy (Chen et al., 2016, 2022). The 
process utilizes a variety of generalist and specialist clades of archaea 
and bacteria to generate and consume intermediate compounds, 
including organic acids. Inappropriate operating conditions can lead to 
process instability and significant reduction in methane production. 
Therefore, predicting and regulating AD processes is crucial for opti
mizing system design and operation. Mathematical modelling is an 
important approach for predicting biogas production and optimizing the 
AD system. Many mathematical models, including unstructured (not 

considering intermediates) and structured (considering intermediates) 
models, have been developed to monitor and predict AD processes 
(Batstone et al., 2002). Unstructured models generally consider hydro
lysis to be rate limiting (i.e., single step), and include first order (Den
nehy et al., 2016; Kafle and Chen, 2016), Monod (Lokshina et al., 2001), 
Contois (Karim et al., 2007) and modified Gompertz (Pan et al., 2019; 
Xie et al., 2011; Zou et al., 2018) models. These have been widely used 
because of their simple structure, identifiability, and limited number of 
parameters. However, because hydrolysis only is considered, they 
cannot predict major failure modes, such as acidification, nor important 
outputs, such as pH, volatile fatty acids (VFAs) concentrations, and 
methane content. 

The International Water Association (IWA) Anaerobic Digestion 
Model No. 1 (ADM1) is a commonly used structured model, which was 
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developed by an IWA task group (Batstone et al., 2002). The ADM1 is 
based on the “four-stage theory of anaerobic digestion” (i.e. hydrolysis, 
acidogenesis, acetogenesis and methanogenesis) (Zeikus et al., 1985), 
which is considered a moderate approach to the inclusion of relevant 
processes to simulate the change of substrates, intermediates, final 
products and major microbial clades in AD (Yang et al., 2020). The 
ADM1 was informed by a number of precedent models (Batstone et al., 
2002). In particular, because the concentrations of important in
termediates, such as lactic acid and ethanol, are normally low in 
anaerobic reactors, these compounds are neglected in the original 
ADM1. With broader application, development of AD technologies, and 
application to specific wastewaters, the ADM1 can fail to effectively 
describe key mechanisms and intermediates (Fedorovich et al., 2003). 
Moreover, difficulties in the characterization for a broad array of 
wastewater types have been highlighted by publication of a generalized 
model. Importantly, phosphorus (P), iron (Fe) and sulfur (S) trans
formations were specifically excluded despite being recognized as 
important due to a lack of precedent research at the time of publication 
(Batstone et al., 2002). This has resulted in modification of the ADM1 
being the focus of publications over the past two decades. Parker (2005) 
summarized the application of the ADM1 to advanced AD processes. 
Batstone et al. (2006a) reviewed extensions to the ADM1 in the early 
years (2002–2005). They focused on the model extensions, such as 
sulfate reduction, and simple phosphorus balances, largely reiterating 
previous gaps. Later, Batstone et al. (2015) provided a further summary, 
mainly the improvement of the ADM1 in plant-wide modelling, identi
fying developments in the linked phosphorus-sulfur-iron processes 
across the cycle, and proposing removal of composite particulates 
concept (XC). These reviews have largely focused on extensions, rather 
than model core, and are somewhat dated. A further review of key el
ements of the model, such as major processes, kinetic expressions 
(especially the inhibition functions), stoichiometry and parameters, is 
still lacking in all aspects. 

The objective of this study is to summarize modifications to the 
major elements of the ADM1 and approaches to model calibration/ 
validation, as well as practical application of the model. The review 
begins with introducing the original ADM1 and then investigates 
modification to the ADM1, including extensions to the model structure, 
modifications of the stoichiometry and the kinetic expressions including 
inhibition functions, as well as simplification to the model in some cases. 
Approaches to model calibration/validation, along with the ranges of 
reported model parameters, are discussed, and practical applications of 
ADM1 are summarized. Finally, future research directions, perspectives 
and challenges are outlined. This review is expected to provide a 
comprehensive understanding of the ADM1 and serve as a foundation 
for the subsequent model development, helping in better prediction and 
regulation of performances of the AD or other processes. 

2. A brief description of the original ADM1 

The ADM1 is a structured model describing the biochemical and 
physicochemical processes of AD. The model is described in consider
able detail in the relevant scientific report (Batstone et al., 2002). 
Components, processes, stoichiometric coefficients, kinetic expressions 
and the relevant parameters are the major elements of the ADM1, and all 
these elements are involved in a Petersen matrix to realize the quanti
tative description of the AD process (Batstone et al., 2002). 

As for most mechanistic biochemical models, intensive state vari
ables are utilized, with soluble components (expressed as S in the model) 
and particulate components (expressed as X in the model) including 
microbial biomass, separated by functional clades, and substrate par
ticulates. These are represented by state variables, with biochemical and 
chemical processes acting as source/sink elements in the general mass 
balance. Biochemical processes of AD in the model include five steps: 
disintegration, hydrolysis, acidogenesis, acetogenesis, and methano
genesis. An overview of the components and bioconversion processes 

that are addressed by the model is presented in Fig. 1. The ADM1 as 
originally published proposed a two-step solubilization process, with 
composite particulates (XC) being “disintegrated” to particulate proteins 
(Xpr), carbohydrates (Xch), lipids (Xli), and inert substances (Xi and Si), 
and the degradable disintegration products then being “hydrolysed” to 
amino acids (Saa), sugars (Ssu), and long-chain fatty acids (LCFAs, Sfa in 
the model), respectively. In the following acidogenesis process, sugars 
and amino acids are fermented into VFAs, hydrogen and carbon dioxide 
by different degraders, and LCFAs are oxidized to produce acetate and 
hydrogen. Furthermore, propionic acid (Spro), butyric acid (Sbu) and 
valeric acid (Sva) are anaerobically converted into acetate (Sac), carbon 
dioxide (Sco2) and hydrogen (Sh2). The last step of methanogenesis in
cludes aceticlastic methanogenesis where methane is produced by 
cleavage of acetate, and hydrogenotrophic methanogenesis, in which 
carbon dioxide is converted by hydrogen-utilizing methanogenic bac
teria into methane (Sch4). Biomass growth is implicit in substrate uptake, 
and linked by a yield coefficient. Decayed biomass returns to the fraction 
of complex organics and undergoes disintegration and hydrolysis. In 
addition to the organic species, inorganic carbon (SIC) and nitrogenous 
species (SIN) are included as acid-base active compounds, and used as 
elemental balance closures. Chemical oxygen demand (COD), is used a 
principal unit, with the zero-COD nitrogenous species and inorganic 
carbon species described in terms of their molar concentrations. 

Substrate conversion rates are expressed as a number of process ki
netics. The disintegration and hydrolysis of complex organic matters 
which are extracellular processes are described as first-order kinetics 
based on the substrate concentration. Decay of biomass is also presented 
by first-order kinetics. This function is an empirical expression that is 
assumed to reflect the cumulative effects of extracellular processes and 
ignore microbial effects (Mottet et al., 2013). Monod-type kinetic ex
pressions, as shown in Fig. 1, are used as the basis for all intracellular 
biochemical processes (acidogenesis, acetogenesis and methanogenesis). 

Intracellular conversion processes can be inhibited by inappropriate 
pH (Latif et al., 2017) or the accumulation of intermediate products, 
such as inorganic nitrogen, free ammonia (Astals et al., 2018; Rajagopal 
et al., 2013; Zheng et al., 2021), molecular hydrogen (Cazier et al., 
2019) et al. The effects of these inhibitions are quantified as inhibition 
functions (I) and expressed in the kinetics as follow: 

ρj = ρmax⋅I1I2I3 (1)  

where ρmax is the Monod-type kinetic equation without inhibitions and Ii 
are inhibition functions. 

Stoichiometric coefficients are quantitative description of the for
mation and conversion of components in the AD, which ensure the mass 
balance of elements in the process reactions and imply the microbial 
growth in the corresponding uptake processes. 

The physicochemical processes in ADM1 involve six acid/base 
equilibria in association with pH solved by a charge balance approach 
and three gas-liquid transfer processes for CH4, CO2, and H2. 

Acid-base reactions relating to physicochemical reactions in the 
liquid phase can be implemented as differential-algebraic equations 
(DAE) or differential equations (DE). If implemented as a DAE system, 
the acid/base pairs are normally lumped as a combined dynamic state 
variable, and the concentration of individual acid or base is calculated 
from the following acid-base equilibria equation: 

Si− −
KaSi

Ka + SH+

= 0 (2)  

where Ka and SH+ denote the acid-base equilibrium constant and the 
variable for hydrogen ion concentration, respectively. pH is determined 
by the proton concentration, which is determined directly by solution of 
the implicit algebraic set as noted above. 

If the liquid phase equations are implemented as DE, acid-base 
transfer would be described by an additional dynamic rate equation 
shown as follow: 
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ρA|B,Hi = kA|B
(
Sliq,HSliq,i − Ka,HiSliq,Hi

)
(3)  

where kA|B is the rate coefficient for the base to acid reaction, Sliq,H, Sliq,i 
and Sliq,Hi are concentration of hydrogen ion, acid ion and acid, 
respectively, and Ka,Hi are the acid association and dissociation constant. 

During the dynamic AD processes, gaseous components (CH4, CO2, 
H2) become supersaturated in the liquid phase and transfer into the gas 
phase (Zhang et al., 2015), which is described by the gas transfer rate 
equation shown as follows: 

ρT,j = kLaj
(
Sliq,j − KH,jPgas,j

)
(4)  

where Sliq,j is the dynamic state variable for soluble gas, Pgas,j is the 
pressure of gas, kLaj is the gas-liquid transfer coefficient and KH,j is the 
Henry’s law coefficient. Gas-liquid transfer is determined by two film 
(liquid film and gas film) controlled mass transfer (liquid film 
controlled). 

The original ADM1 presents a generic structure model initially 
devised for AD of sewage sludge. However, this model exhibits con
strains in both its biochemical and physicochemical parts. In some 
biochemical processes, specific components and inhibitions were 
omitted from the model due to their low concentrations or unfavourable 
conditions in AD of sewage sludge. However, these exclusions can 
introduce biases into model simulations. For example, in the fermenta
tion of carbohydrate-rich substrate, the accumulation of lactate and 
ethanol (which were not accounted for in the original model) can exert 
significant influence on both acidogenesis and methanogenesis. Conse
quently, this oversight can lead to inaccurate simulations of in
termediates, such as VFAs, and ultimate outputs, such as methane (Bai 
et al., 2017; Capson-Tojo et al., 2021). In the physicochemical part of 
ADM1, the model inadequately addresses reactions involving ions and 
the precipitation processes that occur during AD. Particularly, when 
considering phosphorus recovery, ion activity, ion pairing and solids 
precipitation should be described in much more detail (Solon et al., 
2017). This requires incorporation of phosphorus, sulfur, and iron in 
plant-wide modelling. In response to these limitations, many studies 
have focused on modifying ADM1 to expand its application to more 
substrates and scenarios. 

3. Modifications to the ADM1 

To improve model utilization, many modifications to the ADM1 have 
been proposed. Herein, the extensions are summarized in three aspects, 
including model structure, kinetics and stoichiometry, and the simpli
fication and adaptation to the ADM1 are also discussed. 

3.1. Extension to the model structure 

In some cases, key mechanisms are not included in the model (Ker
roum et al., 2010). This deficiency has led to structural modification of 
the ADM1. This requires addition of new components (state variables) 
and processes (reactions), and represents a structural modification to the 
model. Some modifications are illustrated in Fig. 2. 

3.1.1. Extracellular processes and related components 
Disintegration and hydrolysis are usually rate limiting steps in the 

case of a slowly degradable particulate substrate (Ramirez et al., 2009). 
An accurate description of those processes can improve the predictive 
ability of the model. 

Disintegration describes the conversion of complex solid mixture, XC, 
into three biodegradable organic components (Xpr, Xli and Xch) and inert 
components (Si and Xi). In order to simplify the model structure, the 
original ADM1 assumed that XC was homogeneous and subject to a 
single first order disintegration coefficient. In the case when the complex 
input substrates are not homogeneous, different decomposition effi
ciencies can be assumed (Mottet et al., 2013). For instance, Yasui et al. 
(2008) found that degradable organics in the primary sludge contained 
three distinct kinetically differentiable fractions (Xsettle-I, Xsettle-II and 
Xsettle-III) and developed a modified ADM1 structure including separate 
degradation processes for the three identified solid fractions. The divi
sion of XC into readily and slowly biodegradable solid fractions (XCR and 
XCS), as shown in Fig. 2a (pathway 1), was proposed based on the 
different biodegradability obtained from interpreting the methane pro
duction curve. The concept was applied to several studies, resulting in 
reasonable predictions (Garcia-Gen et al., 2015; Jimenez et al., 2014; 
Montecchio et al., 2019; Mottet et al., 2013). When simulating 
co-digestion of more than one input substrates, the co-substrates were 

Fig. 1. The conceptual model for ADM1: (1) sugar degraders (Xsu), (2) amino acid degraders (Xaa), (3) LCFAs degraders (Xfa), (4) propionate degraders (Xpro), (5) 
butyrate and valerate degraders (Xc4), (6) acetate degraders (Xac), and (7) hydrogen degraders (Xh2). 
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incorporated by using separate particulate biodegradable components 
XC_substrate with different kinetic processes (Donoso-Bravo et al., 2020; 
Esposito et al., 2011; Zhao et al., 2019). For instance, when simulating 
the co-digestion of waste activated solid (WAS) and food waste (FW), 
Montecchio et al. (2019) divided XC into two terms related to WAS 
(XC_WAS) and FW (XC_FW). Finally, it is important that only hydrolysis be 
rate-limiting of solubilization process, and the most common approach 
is to characterize input solids as a mix of proteins, carbohydrates, lipids, 
and inerts, and avoid the use of XC, to both avoid imposing 2nd order 
hydrolysis kinetics, and allow varying carbohydrate/protein/lipid/inert 
ratios in the inputs (Batstone et al., 2015; Nopens et al., 2009). 

Dead biomass of all species of degrading organisms is recycled to the 
fraction XC and undergoes the same disintegration process. However, 
since disintegration occurs as an initial step of the anaerobic process 
scheme and decay is continuously performed in a recycling approach 
throughout the retention time, these two processes are actually not 
coupled and have different nitrogen contents (Wett et al., 2006). To 
solve this problem, a modified model ADM1xp was developed, in which 

the products of the decay process were not completely related to the 
fraction XC, but to the Xpr, Xli, Xch and the new inert fraction (Xp) 
(Hinken et al., 2014; Wett et al., 2006). Xp represents inert endogenous 
products, was originally proposed in the ASM1 (Henze et al., 1986), and 
allows separate tracking of input inerts and endogenous inerts. This 
modification has widely been accepted (Hagos et al., 2018; Satpathy 
et al., 2016), and it has been reported by Satpathy et al. (2016) that the 
ADM1xp could significantly reduce the difference between measured 
and simulated biogas productions from 48% to 1%. In order to separate 
the kinetics of biomass decay and degradation of input substrates, a new 
component, dead biomass (Xd) with different decomposition kinetics, 
was introduced to the ADM1 to further subdivide the disintegration 
process (pathway 2 in Fig. 2a) (Garcia-Gen et al., 2013; Montecchio 
et al., 2019). 

Biodegradable disintegration products in the original ADM1 are 
presented as lumped variables (Xch, Xpr and Xli), and they are also 
assumed to be homogeneous, with only one hydrolysis pathway for each 
of them (Batstone et al., 2002). With the diversification of digestion 

Fig. 2. Conceptual model of biochemical processes (a), 
including detailed disintegration and hydrolysis pro
cesses (green line); nitrate reduction (blue line); con
versions of S, Fe and P (red line and purple line) 
(Batstone et al., 2015); syntrophic acetate oxidation 
(yellow line) and original processes (black line), and 
physicochemical processes (b) (Batstone and Flor
es-Alsina, 2022), including CO3

2− precipitation (dark 
green line), PO4

3− precipitation (navy blue line) and S2−

precipitation (deep purple line), for the modified 
ADM1.   
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substrates, especially when XC is excluded as an input, the primary 
particulate substrates may be further fractionated. It was proposed to 
separate each biodegradable disintegration product into two fractions, i. 
e., readily biodegradable fractions and slowly biodegradable fractions, 
and both fractions had different hydrolysis rates (pathway 3 in Fig. 2a) 
(Bai et al., 2015; Esposito et al., 2011; Garcia-Gen et al., 2015). Bareha 
et al. (2019) divided the particulate organic matter into protein and 
non-protein hydrolysable fractions. They were then separately split into 
four different bioaccessible fractions by a modified “extracellular poly
meric substances (EPS)” fractionation method, which was based on 
successive alkaline extractions ending with strong acid extraction. When 
simulating the dynamic AD process of lignocellulosic waste, different 
degradation pathways can be distinguished between cellulose and other 
biodegradable components. Therefore, the lignocellulosic substrate 
could be initially disintegrated into three fractions: readily hydrolysable 
(carbohydrates and proteins), slowly hydrolysable (degradable cellu
lose) and inert (undegradable cellulose) (Li et al., 2021b; Shi et al., 
2014). 

3.1.2. Intracellular processes and components 
Acidogenesis, acetogenesis and methanogenesis are intracellular 

biochemical processes. Due to the complexity of these processes, the 
original ADM1 excludes many intermediate components to maintain a 
simple structure. Consideration of additional intermediates is a key 
point in model extension. Some important extensions are introduced as 
follows and shown in Table 1. 

3.1.2.1. Lactate and ethanol. Lactate and ethanol are excluded from the 
ADM1 due to their low production in most AD systems (Antonopoulou 
et al., 2012b). However, in the AD systems fed with rapidly degradable 
carbohydrate-rich substrates or in fermentation processes, lactate and 
ethanol are important intermediates or by-products (Soda et al., 2011). 
Lactate (but not ethanol) and other organic acids can accumulate to have 
a strong effect on pH (Hinken et al., 2014). Therefore, it is desirable to 
include both lactate and ethanol in the ADM1 under these conditions. An 
uptake of lactate/ethanol and decay of their degraders were added to the 
model in terms of four new variables: soluble components (lactate-Sla, 
ethanol-Set) and their degraders (lactate degraders-Xla, ethanol degra
ders-Xet). Sla and Set are converted from sugar and then decomposed into 
VFAs and hydrogen with the growth of Xla and Xet (Soda et al., 2011). 
This extension has widely been used in AD systems with high carbohy
drate substrates, such as organic waste (Soda et al., 2011), silage 
(Thamsiriroj et al., 2012; Waszkielis et al., 2022), food waste (Par
ra-Orobio et al., 2020; Satpathy et al., 2016), starch wastewater (Hinken 
et al., 2014), and sugarcane vinasse (Couto et al., 2022). In contrast, 
Antonopoulou et al. (2012b) suggested that ethanol was fermented from 
sugar and would not be further degraded, and Xet did not have to be 
included in the extended model. Garcia-Gen et al. (2014) proposed a 
new approach presenting the fermentation of components, such as 
lactate and ethanol, derived from sugar in terms of equivalent glucose 
fermentation by a generic group of fermenters (Xfer) instead of addi
tional microbial groups. 

3.1.2.2. Nitrate reduction. Nitrate (NO3
− ) reduction to nitrogen oxides 

and ultimately to N2 has significant effects on the electron shift, sub
strate competition and inhibition during AD, but these processes were 
not considered in the ADM1. Tugtas et al. (2006) incorporated the NO3

−

reduction processes into the model in order to account for the effects on 
fermentation and methanogenesis: Butyrate/valerate, propionate, ace
tate and H2 were the substrates used by denitrifiers (NOx degra
ders-XNOx) in the presence of N-oxides (SNOx) as electron acceptors 
(pathway 4 in Fig. 2a). Based on this extension, Rousseau et al. (2008) 
further considered the effects of denitrification on pH in AD systems. 
Dissimilatory nitrate reduction to ammonia (DNRA) has not been 
included in the model so far because ammonia production was not 

observed in sulfide-free and N-oxide-amended cultures, indicating that 
the primary nitrate reduction pathway is denitrification (Tugtas et al., 
2010). DNRA may be considered in the future for more practical 
purposes. 

3.1.2.3. Phosphorus, iron and sulfur transformations. Only carbon (C) 
and nitrogen (N) transformations were considered in the ADM1, while P, 
S and Fe transformations were excluded due to limited precedent work 
at the time of publication and the need to jointly consider these sub
strates due to their interactions. For sulfate-rich substrates, the sulfate 
transformations can be described in two different ways (as shown in 
Table 1). First, soluble sulfate (SSO4) is reduced to sulfide (SIS) by one 
group of sulfate reducing bacteria (XSRB_H2) using hydrogen as the 
electron donor (Batstone, 2006). Secondly, a widely used approach has 
assumed that SSO4 is also reduced to sulfides (SIS) with multiple electron 
donors (Sbu, Spro, Sac and Sh2) by relevant bacteria species (XSRB_c4, 
XSRB_pro, XSRB_ac and XSRB_H2) (pathway 5 in Fig. 2a) (Barrera et al., 2015; 
Fedorovich et al., 2003; Flores-Alsina et al., 2016; Pokorna-Krayzelova 
et al., 2017). In order to optimize the microaeration process for biogas 
desulfurization, Pokorna-Krayzelova et al. (2017) extended the ADM1 
with one additional process of sulfide oxidation to elemental sulfur by 
sulfide oxidizing bacteria, XSOB. 

P-related components include phosphorus accumulating organisms 
(XPAO), polyhydroxyalkanoates (XPHA) and polyphosphates (XPP). Their 
incorporation brings seven new processes: uptakes of Sva, Sbu, Spro and 
Sac to form XPHA as well as lysis of XPAO, XPP and XPHA (pathway 6 in 
Fig. 2a) (Flores-Alsina et al., 2016; Wang et al., 2016). Ferric iron (SFe

3+) 
is converted to ferrous iron (SFe

2+) by utilizing hydrogen and/or sulfides 
(SIS) as electron donors (pathway 7 in Fig. 2a) (Flores-Alsina et al., 
2016). The extension of P transformations and its close link to the S and 
Fe cycles are necessary for plant-wide P simulation, especially consid
ering P recovery. 

In addition, electron release from zero-valent iron (ZVI) corrosion, 
H2 formation from ZVI corrosion and transformation of less biode
gradable pollutants (LBPs), were integrated into the ADM1. The modi
fied model could provide more precise strategies for the design, 
development, and application of ZVI-based anaerobic systems, espe
cially for treating various LBPs-containing wastewaters (Xiao et al., 
2013). 

3.1.2.4. Syntrophic acetate oxidation. It has been reported that the 
aceticlastic methanogenesis is likely replaced by a non-aceticlastic 
methanogenesis, known as syntrophic acetate oxidation (SAO), under 
high ammonia (NH4

+) concentrations (Wilson et al., 2012) or high 
temperature (Wett et al., 2014). To simulate these conditions, a modi
fied ADM1, accounting for the SAO pathway (pathway 8 in Fig. 2a) and 
SAO bacteria (XSAOB) (Yang et al., 2020), was implemented in AD sys
tems with high temperature or high solid content, which are prone to 
NH4

+ inhibition (Montecchio et al., 2017b; Rivera-Salvador et al., 2014; 
Wett et al., 2014). For instance, Capson-Tojo et al. (2021) modified the 
model with SAO as acetate-consuming pathway and threshold inhibition 
function for free ammonia inhibition, and got a better simulation. The 
correlation coefficient of methane production increased from 0.610 to 
0.938. 

Some extensions are also proposed under specific conditions. For 
instance, Fezzani and Cheikh (2009) extended the ADM1 with degra
dation of phenolic compounds and achieved accurate simulation for the 
AD of olive mill wastes. Uhlenhut et al. (2018) divided the original 
uptake of propionate into two more detailed pathways with three new 
genera of propionate oxidizing bacteria (XPOB), and achieved a better fit 
between simulation and realistic scenarios. The difference between 
measured and simulated values for mean methane content reduced from 
13.4% to 0.6% after that modification. 
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Table 1 
Detailed information of the extensions to the ADM1 model for intercellular processes and components.   

Processes added Components added Transformations Applicable situation/substrate Refs. 

Fermentation Uptake of lactate; 
Decay of lactate degraders 

lactate - Sla; 
lactate degraders - Xla 

Sugar →
Xsu Lactate 

Lactate →
Xla Propionate+ Acetate 

Fermentation process; 
carbohydrate-rich substrates Parra-Orobio et al. (2020); Satpathy et al. 

(2016); Thamsiriroj et al. (2012);  
Waszkielis et al. (2022) Uptake of ethanol; 

Decay of ethanol degraders 
ethanol - Set; 
ethanol degraders - Xet 

Sugar →
Xsu Ethanol 

Ethanol →
Xet Acetate 

Nitrate reduction Uptake of VFAs with nitrate; 
Uptake of VFAs with nitrite; 
Uptake of VFAs with nitric 
oxide; 
Uptake of VFAs with nitrous 
oxide; 
Uptake of H2 with nitrate; 
Uptake of H2 with nitrite; 
Uptake of H2 with nitric oxide; 
Uptake of H2 with nitrous 
oxide; 
Decay of NOx degraders 

nitrate - SNO3; 
nitrite - SNO2; 
nitrogen - SN2; 
nitric oxide - SNO; 
nitrous oxide - SN2O; 
NOx degraders - XNO3, XNO2, XNO, 
XN2O 

Nitrate̅̅̅̅̅̅→

VFAs, H2
XNO3

Nitrite̅̅̅̅̅̅→

VFAs, H2
XNO2

Nitric oxide 

̅̅̅̅̅̅→

VFAs, H2
XNO

Nitrous oxide̅̅̅̅̅̅→

VFAs, H2
XN2O

Nitrogen 

Nitrate-rich wastewater 
Tugtas et al. (2006); Rousseau et al. (2008) 

Phosphorus, iron and 
sulfur 
transformations 

Uptake of H2 with sulfate; 
Decay of sulfate reducing 
bacteria 

soluble sulfate - SSO4; 
sulfide - SIS; 
sulfate reducing bacteria - 
XSRB_H2 

Soluble sulfate̅̅̅̅̅→

H2
XSRB H2

Sulfide 

sulfate-rich substrates 
Batstone (2006) 

Uptake of VFAs with sulfate; 
Uptake of H2 with sulfate; 
Decay of sulfate reducing 
bacteria 

soluble sulfate - SSO4; 
sulfide - SIS; 
sulfate reducing bacteria - 
XSRB_H2, XSRB_ac, XSRB_pro, XSRB_c4 

Soluble sulfate̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅→

VFA, H2
XSRB H2 ,XSRB ac,XSRB pro,XSRB c4

Sulfide 
Barrera et al. (2015); Fedorovich et al. 
(2003); Flores-Alsina et al. (2016);  
Pokorna-Krayzelova et al. (2017) 

Uptake of H2S (sulfide 
oxidation); 
Decay of sulfide oxidizing 
bacteria 

oxygen - SO2; 
sulfide oxidizing bacteria - XSOB 

H2S ̅→

O2
XSOB

S 

biogas desulfurization 
Pokorna-Krayzelova et al. (2017) 

Storage of VFAs to form 
polyhydroxyalkanoates; 
Decay of phosphorus 
accumulating organisms; 
Lysis of polyhydroxyalkanoates 
and polyphosphates 

phosphorus accumulating 
organisms - XPAO; 
polyhydroxyalkanoates - XPHA; 
polyphosphates - XPP 

VFAs →
XPAO Polyhydroxyalkanoates 

Polyhydroxyalkanoates→VFAs 

enhanced biological 
phosphorus removal (EBPR) 
sludge; plant-wide simulation 

Flores-Alsina et al. (2016); Wang et al. 
(2016) 

Conversion of iron ferric iron - SFe
3+; 

ferrous iron - SFe
2+ Ferric iron ̅̅̅̅̅̅̅ →

H2 ,sulfides Ferrous iron plant-wide simulation 
Flores-Alsina et al. (2016) 

Corrosion of ZVI; 
Degradation of LBPs 

zero valent iron – SFe
0 ; 

ferrous iron - SFe
2+; 

less biodegradable pollutants – 
SLBPs; 
metabolic products of LBPs – 
S(CH) 

Fe0 + 2H+→Fe2+ + H2 

LBPs+ H2→less toxic products 
ZVI-based anaerobic systems 

Xiao et al. (2013) 

Syntrophic acetate 
oxidation 

Syntrophic acetate oxidation; 
Decay of SAO bacteria 

SAO bacteria - XSAOB Acetate →
XSAOB H2 + CO2 

Under high ammonia 
concentration or high 
temperature 

Montecchio et al. (2017b); Rivera-Salvador 
et al. (2014); Wett et al. (2014)  
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3.1.3. Physicochemical processes 
Physicochemical processes involved in the ADM1 describe the non- 

biologically mediated processes in AD systems. In the ADM1, only gas- 
liquid exchange and liquid-liquid (acid-base) reactions were 
addressed, while ion activity and ion pairing (apart from acid-base 
pairing) were not included (Batstone et al., 2012). Physicochemical 
extensions have been extensive since publication of the ADM1 and have 
been proposed for plant wide (and extra-plant) use via the IWA Physi
cochemical Model No. 1 (Batstone and Flores-Alsina, 2022) as shown in 
Fig. 2b. This incorporates much of the extensions discussed below. 

Liquid-gas exchange processes for H2, CH4 and CO2 were incorpo
rated in the original ADM1 as two-film (liquid film-controlled) rate ex
pressions. Due to the substrate complexity or changing conditions, it is 
necessary to consider comprehensive liquid-gas exchanges when new 
gas components, such as H2S (Flores-Alsina et al., 2016) and NH3 
(especially above 10 g N/L and under thermophilic conditions) (Zhang 
et al., 2015), are added to the ADM1. It is noted that gases with high 
solubility may be gas film controlled (Batstone and Flores-Alsina, 2022). 
Furthermore, to better describe the acid–base reactions and their effects 
on the AD processes, more inorganic components and acid/base equi
libria should be incorporated into the model. For example, the equilib
rium amongst four inorganic phosphorus components (PO4

3− /HPO4
2− / 

H2PO4
− /H3PO4) was introduced to the model, and a charge balance 

equation used to calculate the pH value was refined (Zhang et al., 2015). 
In addition, ion pairing and ion activity have important impacts on 
physicochemical processes, and have been extended in the ADM1 
(Batstone and Flores-Alsina, 2022). Some new components, such as SNa

+ , 
SK
+, SCl

- , and ion pairing processes, such as NaCO3
− ↔ Na+ + CO3

2− , were 
considered in the model. Ion strength (as ion activity correction) was 
corrected by multiplying each ion concentration with an activity coef
ficient (γ) (Batstone and Flores-Alsina, 2022; Solon et al., 2015). Solon 
et al. (2015) demonstrated that ion strength correction led to significant 
differences in predicting the process performance, and activity correc
tions were more important than ion pairing effects for pH prediction. 

Precipitation is the major liquid-solid process, but it was not involved 
in the original ADM1 due to a wide range of precipitating ions and 
precipitate types (Ekama et al., 2006). However, liquid-solid reactions 
are very important in systems with high levels of cations, which can 
affect both other physicochemical processes and biochemical processes. 
For instance, struvite (MgNH4PO4) formation can affect the pH values in 
AD systems (Britton et al., 2005). In order to improve the model ability 
to describe the formation rate of precipitates, Zhang et al. (2015) 
considered calcium ions (Ca2+) and magnesium ions (Mg2+) as two 
major Mm+ ions in the model, which could cause 5 major types of pre
cipitates: CaCO3, MgCO3, MgNH4PO4, MgHPO4, and Ca3(PO4)2. 
Comprehensive P precipitation processes, including the formation of 
Ca3(PO4)2, Ca5(PO4)3(OH), Ca8H2(PO4)6, MgNH4PO4, MgHPO4, and 
KMgPO4, were extended to the ADM1 in later studies to simulate P 
behaviour under the P-rich influent (pathway 9 in Fig. 2a, and pathway 
1 and 2 in Fig. 2b) (Flores-Alsina et al., 2016; Wang et al., 2015). Due to 
strong interactions between S and Fe, Flores-Alsina et al. (2016) and 
Puyol et al. (2017) extended the precipitation processes required for the 
P, S and Fe cycles (formation of FeS, and FePO4/Fe3(PO4)2, pathway 10 
in Fig. 2a, and pathway 3 and 4 in Fig. 2b) by a multiple mineral pre
cipitation model. Subsequently, in order to consider the effects of trace 
elements on physicochemical processes of AD, the reversible precipation 
processes involving Fe, Ni, Co, and major anionic components, were 
added to the model (Maharaj et al., 2018, 2019). 

Precipitation kinetics is generally based on the saturation index (SI) 
that is used to indicate the degree of supersaturation (Kazadi Mbamba 
et al., 2022). Musvoto et al. (2000) indicated that the precipitation rate 
only depends on the SI. In order to refine the expression of precipitation 
kinetics, Kazadi Mbamba et al. (2015) included the effect of precipitate 
concentration and Lizarralde et al. (2015) considered the delay of 
nucleation, the influence of crystal seeding and TSS concentration. 

Suitable expressions can be introduced into the ADM1 for the 
extension of precipitation processes. For instance, based on the funda
mental relationship in the crystallisation process, the following equation 
was introduced to describe mechanisms of solids precipitation involving 
Ca, Mg (Zhang et al., 2015), Fe, Co and Ni (Maharaj et al., 2018): 

rMv+Av− = k′
r,Mv+Av−

[
([Mm+]

v+
[Aa− ]

v−
)

1
v − k′

sp,Mv+Av−

1
v
]n

(5)  

where [Mm+] and [Aa− ] denote the concentrations of cations and anions, 
respectively, k′

r,Mv+Av−
is the precipitation rate constant, k′

sp,Mv+Av−
is the 

solubility product, v+ and v− are the total number of cationic and 
anionic charges, respectively, and v = v+ + v− , n is a constant for 
crystallization of sparingly soluble salts. 

3.2. Modifications of kinetics 

The kinetics that describe the material conversion mechanism is a 
fundamental element of the ADM1. Inhibitors present in biochemical 
processes are incorporated into the model via the use of an inhibition 
function (I). While the use of Monod functions for microbial growth (or 
substrate uptake) dominates, variations have been used particularly for 
hydrolysis, and inhibition, but also biochemical uptake. 

3.2.1. Kinetic expressions 
In the original ADM1 model, extracellular processes (disintegration 

and hydrolysis) were assumed to be first-order kinetics, which were in
dependent of microbial activity and proportional to substrate concen
tration. However, hydrolysis is an enzymatic process where hydrolytic 
bacteria cover the surface of solids and produce enzymes (Mottet et al., 
2013). Vavilin et al. (2008) assessed different hydrolysis models and 
found that the Contois kinetics provide a better fit at high organic loading 
rates. The Contois model incorporates a non-parameterized microbial 
concentration term, and hence describes microbe, as well as substrate 
limited conditions. Ramirez et al. (2009) developed a modified ADM1 
using the Contois kinetics instead of the original first-order kinetics to 
account for the growth of hydrolytic bacteria. The Contois model was 
found to be more robust in describing a broad range of experiments with 
minimal changes to the kinetic coefficients (Mairet et al., 2011). As a 
result, it has been widely used in simulating high solid content substrates, 
such as sludge and cattle slurry (Bai et al., 2015; Bareha et al., 2019; 
Mottet et al., 2013; Normak et al., 2015). In addition, Liotta et al. (2015) 
proposed a linear function that dynamically express the kinetic constants 
of three specific processes (disintegration, uptake of acetate and propio
nate) to account for the effect of the TS content on dry AD. 

For intracellular processes, the ADM1 used substrate uptake Monod 
kinetics to express the biochemical reaction rate (Batstone et al., 2002). 
The main modification has been the use of growth-based (Siegrist et al., 
2002) rather than uptake-based kinetics, and this is mainly perspective, 
since mathematically, there is no difference as discussed in the ADM1 
scientific and technical report. While Monod kinetics have been effective 
in describing AD processes, alternatives which incorporate mainte
nance, and hence reduce yield under stress can be applied (and are 
incompatible with growth-based kinetics) (Kleerebezem and van Loos
drecht, 2008). 

3.2.2. Inhibition functions 
In the original ADM1, the kinetics of disintegration, hydrolysis, and 

decay of biomass processes were related only to kinetic constants and 
substrate concentrations, without taking into account any inhibitors. 
However, it has been suggested that inhibitors of hydrolysis should be 
considered due to microbial inactivation and enzyme denaturation 
under adverse conditions. For example, Normak et al. (2015) introduced 
hydrolysis kinetics containing VFAs inhibition (ITVFA) to simulate the 
start-up process of AD of cow manure. Li et al. (2020) considered the 
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inhibition of hydrolysis caused by high solids content (ITS) and used a 
non-competitive inhibition function to reflect inhibition of hydrolysis. 
Furthermore, various inhibitors can increase biomass decay, which is 
completely neglected in the original ADM1. Sun et al. (2020) developed 
a low-pH inhibition switching function IpH (Table 2) to describe 
increased decay at low pH. 

For intracellular processes, pH inhibition was implemented using 
empirical equations, while other inhibitions were presented as non- 
competitive functions (Batstone et al., 2002). Non-competitive func
tions have widely been used in literatures, but sometimes they cannot 
describe inhibition processes accurately. Non-competitive function was 
only influenced by the concentration of inhibitors and the influence of 
substrate concentration was ignored. Bai et al. (2017) used the Monod 
function to simulate the inhibition of free ammonia on VFAs generation 
during anaerobic fermentation of sludge with high solids content. The 

determination coefficient of VFAs increased to over 0.95 compared to 
less than 0.8 when a non-competitive function was used. The Hill 
function, proposed by Ramirez et al. (2009), has also been used to 
describe pH inhibition effects (Barrera et al., 2015; Wang et al., 2015). 
However, these kinetic inhibition functions have limitations, including 
allowing the reaction to proceed even under unfavourable thermody
namic conditions. Specifically, the uptake of propionate and butyrate is 
fundamentally impacted by concentration of products (i.e., H2 and ac
etate) due to positive Gibbs free energy at elevated concentrations. To 
address this, the thermodynamic inhibition function (Ith, shown in 
Table 2) of H2 was introduced into the kinetic expression of the uptake of 
propionate and butyrate (Shi et al., 2016). This was found to have no 
impact vs a non-competitive function in biofilm growth kinetics due to 
interaction, diffusion, and other controlling factors (Batstone et al., 
2006b). 

Table 2 
Inhibition terms added to the ADM1 kinetic expressions.  

Inhibition 
item 

Process Inhibition term Refs. 

ITS Hydrolysis ITS =
1

1 + STS/KTS 
Li et al. (2020) 

IpH Decay of Xac; decay of Xh2 specific decay rate =
b

IpH 

IpH =

⎧
⎪⎨

⎪⎩

exp
(

− 3
(

pHUL − pH
pHUL − pHLL

)n)

if pH < pHUL

1 if pH ≥ pHUL 

Sun et al. (2020) 

INH3 Uptake of acetate hill function 

INH3 = b

(

1 −
Sα

NH3

KSα
NH3

+ Sα
NH3 ,lim

) Ramirez et al. (2009) 

Uptake of acetate threshold inhibition function Astals et al. (2018) 
IVFA Uptake of acetate ITVFA =

1
1 + STFVA/KI,TVFA 

Boubaker and Ridha (2008); Fezzani and 
Cheikh (2009) 

Hydrolysis IVFA =
1

1 +

(
Mvfa

IMvfa

)n Normak et al. (2015) 

Iac Uptake of propionate; uptake of butyrate Iac =
1

1 + Sac/KI,ac 
Li et al. (2019) 

ILCFA Hydrolysis; Uptake of sugars; Uptake of LCFAs; 
Uptake of VFAs 

Ilcfa =
1

1 + Slcfa/KI,lcfa 
Ramirez et al. (2009) 

Uptake of LCFAs; Uptake of acetate; Uptake of H2 Ilcfa =
1

1 + S2
lcfa/(K′I,lcfa⋅XI,lcfa)

Palatsi et al. (2010) 

Uptake of acetate Gaussian function 
Ilcfa =
⎧
⎪⎨

⎪⎩
e
− 2.77259

(
Sfa − KI,fa,low

KI,fa,high − KI,fa,low

)2

for Sfa > KI,fa,low

1 for Sfa ≤ KI,fa,low 

Arnell et al. (2016); Keucken et al. (2018) 

Ilac Uptake of acetate Ilac =
1

1 + Slac/KI,lac 
Thamsiriroj et al. (2012) 

INa
+ Uptake of acetate INa+ =

1
1 + SNa+ /KI,Na+

Hierholtzer and Akunna (2012) 

Ications Uptake of acetate Ications =
1

1 +
SNa+

KI,Na+
+

SMg2+

KI,Mg2+
+

SCa2+

KI,Ca2+
+

SK+

KI,K+

Hierholtzer and Akunna (2014); Song et al. 
(2018) 

IMe
2+ All biochemical processes IMe2+ =

a1SMe2+ + a2

(SMe2+ )
2
+ b1SMe2+ + b2 

Maharaj et al. (2018) 

IH2S Acetogenesis and Methanogenesis IH2S =
1

1 + SH2 S/KI,H2 S 
Barrera et al. (2015) 

Acetogenesis and Methanogenesis 

IH2S =

⎧
⎪⎪⎨

⎪⎪⎩

(

1 −
SH2 S

KI,H2 S

)2
if SH2 S < KI,H2 S

10 − 6 if SH2S ≥ KI,H2S 

Pokorna-Krayzelova et al. (2017) 

IPO4 Uptake of VFAs;Uptake of LCFAs IPO4 =
1

1 +
KS,PO4

SPO4

+

(
SPO4

KI,PO4

)2 Wang et al. (2015) 

INOx Uptake of acetate; Uptake of H2 non-competitive inhibition functions Rousseau et al. (2008); Tugtas et al. (2006) 
Iphenol Uptake of acetate Iphenol =

1
1 + S2

phenol/KI,phenol 
Fezzani and Cheikh (2009) 

Ith Uptake of VFAs (H2 inhibition) 
Ith =

⎧
⎪⎨

⎪⎩

1 −
ΔGR

RthT
if ΔGR < 0

0 if ΔGR ≥ 0  

Patón et al. (2017)  
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In the original ADM1, the effect of acid inhibition was mainly hidden 
in the empirical pH inhibition function. However, low pH inhibition is 
partly due to the concentration of free acids, and it is reasonable to 
include this separately. The non-competitive inhibitory term IVFA was 
added into the ADM1 to represent the inhibitory effect of high concen
tration of VFAs on methanogenesis (Boubaker and Ridha, 2008; Fezzani 
and Cheikh, 2009; Thamsiriroj et al., 2012). Considering the interaction 
of VFAs, Li et al. (2019) added a non-competitive inhibition function 
(Iac) to include acetate inhibition on the uptake of propionate and 
butyrate processes. 

The ADM1 includes several commonly used inhibition functions, but 
specific inhibition functions have been utilized, as summarized in 
Table 2. Trace elements, such as Fe, Ni and Co, have explicitly been 
considered by introducing an inhibition term (IMe

2+), as they are essential 
constituents in enzyme systems (Maharaj et al., 2019, 2018). LCFAs 
inhibition (Ilcfa) has also been included in the ADM1, as acetogenesis and 
methanogenesis are highly sensitive to LCFAs and can be inhibited at 
high LCFAs concentrations (Beline et al., 2017). Palatsi et al. (2010) 
proposed a new inhibition function which replaced the KIlcfa with K’

Ilc

faXlcfa/Slcfa (Table 2) to consider a relationship between LCFAs inhibi
tory substrate concentration and the specific biomass content. In 
addition, Arnell et al. (2016) used Gaussian function (threshold function 
that has been used for pH inhibition in ADM1) to describe LCFAs inhi
bition on the uptake of acetate, which explicitly allowed for determining 
the onset of the inhibition (Keucken et al., 2018). 

Sulfide is also inhibitory to acetogenesis and methanogenesis, and 
the extension of sulfide inhibition (IH2S) is needed when modelling AD 
systems with sulfur-rich substrates (e.g. cane-molasses vinasse) to pre
dict the failure of AD (especially methanogenesis) (Barrera et al., 2015). 
Non-competition inhibition function and a staged inhibition function 
were used for sulfide inhibitions (Barrera et al., 2015; Pokorna-Kray
zelova et al., 2017). Considering the influence of orthophosphate on the 
biological processes during AD, Wang et al. (2015) modified the ADM1 
by including generalized Haldane equations for orthophosphate inhi
bition (IPO4) into the kinetics for uptake of VFAs and LCFAs. In addition, 
the ADM1 has also been extended with other inhibition for the aceto
genesis and methanogenesis, such as lactate inhibition (Hinken et al., 
2014; Thamsiriroj et al., 2012), nitrate inhibition (Rousseau et al., 2008; 
Tugtas et al., 2006), phenol inhibition (Fezzani and Cheikh, 2009), 
cation inhibition (Hierholtzer and Akunna, 2012, 2014; Song et al., 
2018) and pharmaceuticals inhibition (Fountoulakis et al., 2008). 

Expanding the inhibition processes can not only improve model fit, 
but also help provide strategies to alleviate the inhibition of various 
adverse factors on AD processes. Acetogenesis and methanogenesis are 
easily inhibited by intermediates in AD systems, so it is essential to 
include context specific inhibition in the model to allow realistic simu
lation of the process. 

3.3. Modifications of the model stoichiometry 

Stoichiometric coefficients of disintegration (fch,xc, fpr,xc, fli,xc, fsi,xc 
and fxi,xc) represent biodegradable and non-biodegradable fractions of 
composite solids (XC). Many researchers have proposed experimental 
protocols or methodologies for the characterization of substrate 
composition in relation to ADM1 input variables and have modified the 
stoichiometric coefficients. Methane production curves obtained from 
bio-methane potential (BMP) tests have widely been used to estimate 
biodegradable and inert fractions of the substrates (Baquerizo et al., 
2021; Mottet et al., 2013). 

Direct physical-chemical analysis was the most basic method to split 
the complex solids into protein, lipid and carbohydrate (Li et al., 2021c; 
Ramirez et al., 2009), which include the Lowry’s method (Lowry et al., 
1951) or Kjeldahl nitrogen for protein content estimation, Soxhlet’s 
method (Luque-Garcia and de Castro, 2004) for lipid content determi
nation, and anthrone reduction method (Dreywood, 1946), Weender 
analysis (Naumann and Bassler, 1993) or Van Soest method (Van Soest 

and Wine, 1967) for carbohydrate content measurements. It should be 
noted that, particularly for high-solids samples, loss or denaturation of 
organic fractions may occur during analysis. Elemental analysis was 
proposed by Kleerebezem and Van Loosdrecht (2006) and generalized 
by Zaher et al. (2009) to convert the elemental composition and COD 
into ADM1 inputs. Jimenez et al. (2014) proposed a more rapid method 
by coupling sequential chemical extractions with 3D fluorescence 
spectroscopy to get the detailed characterization of organic matters. 
Near infrared spectroscopy is a fast and cost-efficient way to charac
terize solid wastes content, and it can be used in a partial least square 
regression model to estimate methane production kinetics (Charnier 
et al., 2017a, 2017b). Guo et al. (2023) used combined instrumental 
analyses to achieve a rapid and accurate fractionation of the primary 
organic matters in the substrates. 

The stoichiometry for acidogenesis of sugars can be altered as they 
may depend on reactor conditions, including redox conditions and pH 
(Shi et al., 2019). The parameters involved in the original stoichiometry 
for the acidogenesis (fac,su, fpro,su, fbu,su, fh2,su) are based on the 
assumption that products are produced in constant proportions, but they 
may not adequately simulate experimental results (Uhlenhut et al., 
2018). In response, Rodríguez et al. (2006) proposed a stoichiometric 
system with variable acidogenesis products controlled by thermody
namics rather than kinetics. To account for electron-sink capacity 
(incorporating pH), which highly affects acidogenesis, some other var
iable stoichiometric systems have been developed and added to the 
ADM1. These systems depend on the concentration of undissociated 
acids (Penumathsa et al., 2008), hydrogen partial pressure (pH2) 
(Thamsiriroj et al., 2012), and NADH/NAD+ (Shi et al., 2019). 

The implementation of the variable stoichiometry system expands 
the ADM1 applicability to fermentative systems and reduces the 
parameter numbers to be estimated (Penumathsa et al., 2008; Shi et al., 
2019). This development is particularly important due to the fact that 
the stoichiometric parameters for acidogenesis of sugars are subject to 
reactor conditions. 

3.4. Simplifications/adaptations to the ADM1 

In contrast to studies focused on model extension, some research has 
concentrated on simplifying or adapting ADM1-like models to facilitate 
their application in processes beyond AD. For instance, in dark 
fermentation (DF) processes, particularly in some biohydrogen pro
duction scenarios, the significance of methanogenesis is diminished or 
even absent. Therefore, it is prudent to adapt the ADM1 framework to 
predict the formation of hydrogen and VFAs by excluding the final step 
of methanogenesis (Gadhamshetty et al., 2010; Pradhan et al., 2016; 
Valentín-Reyes et al., 2018). In AD or fermentation processes of certain 
simple substrates, such as sucrose, the initial stage of the process can 
involve a single substrate instead of XC, excluding the hydrolysis of 
protein and lipid (Huang et al., 2018). In addition, a linearized form of 
ADM1 (LADM) was developed and implemented in a model predictive 
control (MPC) system to predict the biogas production (Li et al., 2021a). 

4. Approaches to calibration and validation of ADM1 

4.1. Model calibration 

The calibration of the model generally focuses on the kinetic pa
rameters, which would vary with AD conditions and substrates. Kinetic 
parameters are generally calibrated using the method described in 
Fig. 3. A large number of kinetic parameters are involved in the model, 
but only a limited number are contestable (i.e., can be changed in most 
situations). Those for specific cases can be selected based on previous 
research, commonly related to the rate-controlling step, which is nor
mally hydrolysis for particulate substrates (Rivera-Salvador et al., 2014) 
or mathematical algorithms (sensitivity analysis) (Yu et al., 2012). The 
parameters are estimated by minimizing the error between the 
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experimental and simulated data. The “trial and error” method is a 
simple manual calibration that is suitable for situations where a few 
parameters need to be calibrated or the simulated results are similar to 
the experimental data. However, for cases involving many complex 
parameters, iterative methods (optimization algorithms), e.g., non-liner 
least-square (Montecchio et al., 2017b), genetic algorithm (Koutrouli 
et al., 2009), differential evolution algorithms (Rivera-Salvador et al., 
2014), implemented simplex method (Hinken et al., 2014), and particle 
swarm optimization (Bai et al., 2015, 2017), are more efficient and 
rapid. Any iterative or single step optimisation technique should also 
include statistical analysis of parameter uncertainty, including joint 
confidence intervals (Batstone et al., 2009). Experimental methods can 
also be used to determine kinetic parameters, as demonstrated by 
Uhlenhut et al. (2018), who used Lineweaver-Burk diagrams to estimate 
the parameters for uptake of propionate (km,pro and Ks,pro). Recently, Ge 
et al. (2023) used machine learning model to predict the kinetic pa
rameters, and enhanced the performance of ADM1. This indicates 

machine learning methods can be combined with the traditional 
mechnism models to improve simulation accuracy. 

The description, units, default values, and ranges of reported values 
of kinetic parameters of the ADM1 are summarized in Table 3. Param
eters of hydrolysis and methanogenesis are the most frequently modified 
parameters. Hydrolysis is considered the rate-limiting step in AD (Feng 
et al., 2006), and the rate of hydrolysis varies considerably with the 
substrate. For example, hemicellulose and amorphous cellulose are 
slower to be hydrolysed than common carbohydrate and protein sub
strates (Li et al., 2021b). Therefore, the hydrolysis parameters (kdis or 
khyd) are more often modified (Table 3). Since methane production is 
commonly used as a simulation indicator (Montecchio et al., 2019; 
Ozkan-Yucel and Gökçay, 2010), kinetic parameters for the uptake of 
acetate and H2 (km_ac and Ks_ac, km_h2 and Ks_h2) which can directly affect 
methane production, are also frequently modified. 

In some specific simulation situations, kinetic parameters of physi
cochemical processes are also important. For instance, in dry AD of 

Fig. 3. Modelling methodology used for kinetic parameter calibration.  
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Table 3 
Summary of the reported kinetic parameters in the ADM1.  

Symbols Descriptions Units Default values  
Batstone et al. 
(2002) 

Ranges of 
reported values 

References 

kdis Complex particulate 
disintegration first order constant 

d− 1 0.5 0.001–2.2 Biernacki et al. (2013), Boubaker and Ridha (2008), Chen et al. 
(2016, 2009), Dereli et al. (2010), Ersahin et al. (2007), Fezzani 
and Cheikh (2009), Gali et al. (2009), Lee et al. (2009), Li et al. 
(2021c), Montecchio et al. (2017a), Otuzalti and Perendeci 
(2018), Parra-Orobio et al. (2020), Rivera-Salvador et al. (2014),  
Satpathy et al. (2016), Shi et al. (2016, 2014), Thamsiriroj and 
Murphy (2011), Wichern et al. (2009), Yu et al. (2012) 

khyd,ch Carbohydrate hydrolysis first 
order rate constant 

d− 1 10 0.1–10 Aichinger et al. (2015), Aldin et al. (2010), Biernacki et al. (2013), 
Chen et al. (2016, 2009), Derbal et al. (2009), Ersahin et al. 
(2007), Kerroum et al. (2010), Koch et al. (2010), Li et al. (2021c), 
Nordlander et al. (2017), Ozkan-Yucel and Gökçay (2010),  
Parra-Orobio et al. (2020), Rivera-Salvador et al. (2014), Satpathy 
et al. (2016), Shi et al. (2016, 2014), Uhlenhut et al. (2018) 

khyd,pr Protein hydrolysis first order rate 
constant 

d− 1 10 0.0014–10 

khyd,li Lipid hydrolysis first order rate 
constant 

d− 1 10 0.015–10 

km,su Monod maximum specific 
monosaccharide uptake rate 

COD⋅COD− 1⋅d− 1 30 1.7–37.94 Dereli et al. (2010), Ersahin et al. (2007), Fezzani and Cheikh 
(2009), Girault et al. (2011), Mendes et al. (2015), Normak et al. 
(2015), Ozkan-Yucel and Gökçay (2010), Rivera-Salvador et al. 
(2014) 

Ks,su Half saturation constant for 
monosaccharide degradation 

kgCOD⋅m− 3 0.5 0.12–4.5 

km,aa Monod maximum specific amino 
acid uptake rate 

COD⋅COD− 1⋅d− 1 50 19.8–50 Aldin et al. (2010), Chen et al. (2016), Dereli et al. (2010),  
Mendes et al. (2015), Normak et al. (2015), Otuzalti and 
Perendeci (2018), Rivera-Salvador et al. (2014) Ks,aa Half saturation constant for amino 

acid degradation 
kgCOD⋅m− 3 0.3 0.05–0.58 

km,fa Monod maximum specific long 
chain fatty acids uptake rate 

COD⋅COD− 1⋅d− 1 6 4–24.057 Dereli et al. (2010), Ersahin et al. (2007), Otuzalti and Perendeci 
(2018), Rivera-Salvador et al. (2014), Wang et al. (2015) 

Ks,fa Half saturation constant for long 
chain fatty acids degradation 

kgCOD⋅m− 3 0.4 0.3–1 

km,c4 Monod maximum specific 
valerate and butyrate uptake rate 

COD⋅COD− 1⋅d− 1 20 5–20.6 Antonopoulou et al. (2012a), Dereli et al. (2010), Ersahin et al. 
(2007), Kalfas et al. (2006), Koutrouli et al. (2009), Normak et al. 
(2015), Otuzalti and Perendeci (2018), Ozkan-Yucel and Gökçay 
(2010), Rivera-Salvador et al. (2014), Thamsiriroj and Murphy 
(2011), Wang et al. (2015) 

Ks,c4 Half saturation constant for 
butyrate and valerate degradation 

kgCOD⋅m− 3 0.2 0.04–0.6 

km,pro Monod maximum specific 
propionate uptake rate 

COD⋅COD− 1⋅d− 1 13 2.2–18 Barrera et al. (2015), Chen et al. (2009), Ersahin et al. (2007),  
Girault et al. (2011), Kalfas et al. (2006), Koutrouli et al. (2009),  
Lee et al. (2009), Normak et al. (2015), Otuzalti and Perendeci 
(2018), Ozkan-Yucel and Gökçay (2010), Rivera-Salvador et al. 
(2014), Shi et al. (2016), Sun et al. (2021), Thamsiriroj and 
Murphy (2011), Wang et al. (2015), Wichern et al. (2009) 

Ks,pro Half saturation constant for 
propionate degradation 

kgCOD⋅m− 3 0.1 0.02–0.6 

km,ac Monod maximum specific acetate 
uptake rate 

COD⋅COD− 1⋅d− 1 8 4–35 Antonopoulou et al. (2012a), Atallah et al. (2014), Barrera et al. 
(2015), Boubaker and Ridha (2008), Chen et al. (2016, 2009),  
Dereli et al. (2010), Ersahin et al. (2007), Fezzani and Cheikh 
(2009), Girault et al. (2011), Kalfas et al. (2006), Koch et al. 
(2010), Koutrouli et al. (2009), Lee et al. (2009), Mendes et al. 
(2015), Montecchio et al. (2017a), Nordlander et al. (2017),  
Normak et al. (2015), Ozkan-Yucel and Gökçay (2010), Page et al. 
(2008), Parra-Orobio et al. (2020), Shi et al. (2016, 2014), Sun 
et al. (2021), Thamsiriroj and Murphy (2011), Wang et al. (2015),  
Yu et al. (2012), Zhou et al. (2019) 

Ks,ac Half saturation constant for 
acetate degradation 

kgCOD⋅m− 3 0.15 0.05–1.5 

km,h2 Monod maximum specific 
hydrogen uptake rate 

COD⋅COD− 1⋅d− 1 35 2–44 Antonopoulou et al. (2012a), Barrera et al. (2015), Chen et al. 
(2016, 2009), Dereli et al. (2010), Koch et al. (2010), Mendes 
et al. (2015), Nordlander et al. (2017), Otuzalti and Perendeci 
(2018), Parra-Orobio et al. (2020), Rivera-Salvador et al. (2014),  
Shi et al. (2016), Sun et al. (2021), Thamsiriroj and Murphy 
(2011), Wichern et al. (2009), Zhou et al. (2019) 

Ks,h2 Half saturation constant for 
uptake of hydrogen 

kgCOD⋅m− 3 7 × 10− 6 1 × 10− 6–2.5 ×
10− 4 

kdec Decay rate for organisms d− 1 0.02 0.02 / 
KI,h2,c4 Hydrogen inhibitory 

concentration for C4 degrading 
organisms 

kgCOD⋅m− 3 1 × 10− 5 5 × 10− 8–1 ×
10− 5 

Koch et al. (2010), Wichern et al. (2009) 

KI,h2,fa Hydrogen inhibitory 
concentration for FA degrading 
organisms 

kgCOD⋅m− 3 5 × 10− 6 5 × 10− 6 / 

KI,h2,pro Inhibitory hydrogen 
concentration for propionate 
degrading organisms 

kgCOD⋅m− 3 3.5 × 10− 6 4.6 × 10− 8–3.5 ×
10− 6 

Koch et al. (2010), Wichern et al. (2009) 

KI,NH3,ac Inhibitory free ammonia 
concentration for acetate 
degrading organisms 

kgmole⋅m− 3 0.0018 0.0018–0.0223 Boubaker and Ridha (2008), Fezzani and Cheikh (2009), Normak 
et al. (2015), Wichern et al. (2009) 

pHLL,ac pH level at which there is full 
inhibition of acetate degradation 

– 6 6 / 

pHUL,ac pH level at which there is no 
inhibition of acetate degrading 
organisms 

– 7 7 / 

(continued on next page) 
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cardboard, in addition to the decrease in the first-order hydrolysis rate 
(khyd_ch), a reduced gas transfer resulted in a significant decrease in the 
liquid/gas mass transfer coefficient, kT, from its default value of 200 d− 1 

for wet AD of activated sludge to 0.5 d− 1 (Abbassi-Guendouz et al., 
2012). Apart from kinetic coefficients (gas transfer, solids precipitation), 
most parameters in the physicochemical model are fundamentally fixed 
by free energy, and are not contestable. 

4.2. Model validation 

The validation of the model is to fit the outputs of the model with the 
experimental results, which is also the evaluation of the model. The 
goodness of outputs of simulation can be evaluated by means of the Nash 
Sutcliffe Efficiency Coefficient (NE), the Root Mean Square Error 
(RMSE) (Jimenez et al., 2014), the Correlation Coefficient (CC) (Mon
tecchio et al., 2019), Theil’s inequality coefficient (TIC) (Wang et al., 
2015), regression or correlation coefficient (R2) (Jimenez et al., 2014; 
Mottet et al., 2013), mean relative absolute error (MRAE) or mean ab
solute error (MAE) (Barrera et al., 2015; Li et al., 2020) et al. Finally, 
parameter uncertainty (confidence interval) can be used to determine 
model validity as expressed through parameters (a narrow region 
identifies a high confidence in model parameter) (Batstone et al., 2009). 

The model can be used as a validation platform to verify the exper
imental results and explain the process mechanism by model parame
ters, structures and simulation results (Fig. 4). Feng et al. (2006) 
identified that hydrolysis was not a rate-limiting step in the AD of 

blackwater since the output of ADM1 was not sensitive to the distribu
tion ratio amongst carbohydrates, proteins and lipids. Li et al. (2021c) 
explained the inhibitory effect of lignin on the AD process by comparing 
the hydrolysis kinetic parameters of the expanded component (cellu
lose). The model results can also be combined with microbial analysis to 
verify and explain microbial activity that is difficult to observe with 
macroscopic experimental phenomena. For instance, Montecchio et al. 
(2017b) validated the microbiological activity of SAO with the extended 
ADM1, and the simulation results showed the variation of microorgan
isms involved in the SAO pathway. Yang et al. (2020) used the ADM1 to 
simulate the bioaugmentation to alleviate ammonia inhibition during 
AD and analyse effects of different bioaugmentation strategies on the 
methanogenic process. 

5. Practical applications of the ADM1 

The ADM1 was developed as a generalized model, but focused on 
sewage sludge (Batstone and Keller, 2003; Batstone et al., 2004). With 
the modification of the model, the model can be more widely used in 
different AD systems with complex substrates, such as food waste, 
agriculture waste or other co-substrates with sewage sludge. So far, the 
modified ADM1 has been used to simulate the lab-scale or full-scale AD 
processes in reactors including continuously stirred tank reactor (CSTR), 
upflow anaerobic sludge bed reactor (UASB), anaerobic baffled reactors 
(ARB), two-phase anaerobic digestion, temperature-phase anaerobic 
digestion, anaerobic membrane bioreactor (AnMBR), and good 

Table 3 (continued ) 

Symbols Descriptions Units Default values  
Batstone et al. 
(2002) 

Ranges of 
reported values 

References 

pHLL,h2 pH level at which there is full 
inhibition of hydrogen degrading 
organisms 

– 5 5 / 

pHUL,h2 pH level at which there is no 
inhibition of hydrogen degrading 
organisms 

– 6 6 / 

pHLL,acid pH level at which there is full 
inhibition 

– 4 4–6 Wichern et al. (2009) 

pHUL, 

acid 

pH level at which there is no 
inhibition 

– 5.5 5.5–8.5 Wichern et al. (2009)  

Fig. 4. Validation and application of the ADM1.  
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simulation results on various output indexes were obtained, as shown in 
Table 4. 

The well-fitted ADM1 model can be applied to simulate AD processes 
of urban, agricultural and industrial wastes as presented in Table 4. For 
urban application, the ADM1 has been used for simulation and design of 
AD systems of urban organic wastes, such as food and garden wastes 
(Curry and Pillay, 2012; Fitamo et al., 2016), municipal wastewater 
(Ozgun, 2019), grey water, black water, faeces (Elmitwalli et al., 2006, 
2011), and primary or waste activated sludges from water resource re
covery facilities (WRRFs) (Baquerizo et al., 2021). The ADM1 is also 
useful in agricultural applications, such as AD processes of grass silage 
(Koch et al., 2010; Wichern et al., 2009), sweet sorghum extract 
(Antonopoulou et al., 2012a), and manure (Li et al., 2020; Page et al., 
2008). The industrial applications of the ADM1 are much more extensive 
(as shown in Table 4) and more complex substrates are involved, such as 
various kinds of industrial wastewater (Ersahin et al., 2007; Hinken 
et al., 2014), olive mill solid waste (Boubaker and Ridha, 2008), and 
vinasse from sugarcane ethanol distillation (Barrera et al., 2015; Couto 
et al., 2022). 

The ADM1 can be used as a management tool for the design and 
operation of the engineered AD processes in practice (Fig. 4). The AD 
start-up process is one of the most important issues when a new biogas 
plant is built or restarted (Normak et al., 2015). This can be unstable or 
fail due to poor inoculum (Pandey et al., 2010, 2011) or high organic 
loading rate (OLR) (Zhao et al., 2010). The extended ADM1 can help 
better predict the start-up process, such as the activity of microorgan
isms (Jablonski and Lukaszewicz, 2014; Zhao et al., 2010) and dynamic 
changes of VFAs (Shi et al., 2016), and to provide a start-up procedure, 
including dynamic control (Batstone et al., 2010). Normak et al. (2015) 
simulated the uninoculated start-up of the anaerobic digestion of cattle 
slurry using the modified ADM1 with an inhibition phase, and identified 
an inhibitory threshold value of VFAs to hydrolysis of 9.87 g⋅L− 1 during 
the start-up period. During stable operation, the model can be used to 
adjust AD condition and realize the maximum recovery of energy and 
other by-products with the minimum manual effort or ancillary mea
surements. OLR and hydraulic retention time (HRT) are significant 
operational parameters in the AD process. Based on simulation using a 
modified model, Mendes et al. (2015) concluded that the optimum HRT 
of the mesophilic anaerobic sludge digestion system was in the range of 
6–9 days, and organic shock loading rate above 35 kg⋅m− 3⋅d− 1 would 
negatively impact performance of the reactor or cause it to fail. This 
application was supported by Montecchio et al. (2017a), who proposed 
that the maximization of the methane and energy production for one 
unit of digester volume in thermophilic biogas plants fed with waste 
activated sludge was achieved at HRTs range of 10–12 days. Some re
searchers used the ADM1 to predict the collapse threshold of the 
anaerobic digester (Boubaker and Ridha, 2008; Koutrouli et al., 2009). 
When multiple substrates are co-digested, the model can be used to 
determine the optimal ratio between different substrates to maximize 
the biogas production (Sanaye et al., 2022; Zaher et al., 2009; Fitamo 
et al., 2016). For instance, Zhou et al. (2019) simulated the anaerobic 
co-digestion (AcoD) of WAS and maize with different mixing ratios, and 
demonstrated the optimal ratio was 2: 1. Zhou et al. (2020) developed a 
rule-based proportional-integral-derivative (PID) controller for the 
feeding control of the AcoD process, which were combined with the 
ADM1 to keep methane production stable at the setpoint, resisting the 
disturbances and maximizing methane production. 

The development of plant-wide modelling is driven by the fact that 
the sludge originates from the wastewater treatment and that the nature 
of the sludge is closely related to the wastewater treatment process. In 
addition, return streams from digestion are a significant load on the 
main treatment process (Monje et al., 2022). In order to compare the 
performance of different control strategies in a unified framework, the 
Benchmark Simulation Model No. 2 (BSM2) was presented as a 
plant-wide model, which contains both ASM series and the ADM1 
(Gernaey et al., 2014, 2006; Vreck et al., 2006). With the emphasis on P 

recovery, in order to simulate the P recovery in wastewater treatment 
processes, Batstone et al. (2015) and Flores-Alsina et al. (2016) proposed 
a plant-wide phosphorus model (including S and Fe) based on BSM2. 
Plant-wide modelling of wastewater treatment has been a key focus, 
particularly in the development of commercial software (Batstone et al., 
2015). 

The application scope of the modified ADM1 has significantly been 
expanded. Beyond its conventional use in the AD process, the modified 
models can offer valuable insights into process optimization, substrate 
utilization, and product formation of the fermentation processes. 
Various kinds of valuable by-products can be produced during the 
anaerobic fermentation, such as lactate, VFAs and H2, and the modified 
ADM1 can be used to predict the production of those compounds and 
regulate optimal fermentation conditions (Guellout et al., 2018; Shi 
et al., 2016). 

In addition, biogas upgrading processes are crucial for enhancing the 
quality and potential utilization of biogas. The ADM1 has been extended 
and adapted to facilitate the simulation of biogas upgrading by biogas 
desulfurization. In a study of Oliveros-Muñoz et al. (2021), the modified 
ADM1-S/O was used to optimize microaeration conditions, revealing 
that the optimal initiation time for microaeration was day 11, whereas 
the dissolved oxygen concentration in the digester was 1.936 × 10− 4 

ppm. However, the ADM1 application in biogas upgrading processes 
remains relatively limited. In the future, the model could potentially 
serve as a useful tool for exploring additional biogas upgrading pro
cesses, such as CO2 removal and CH4 enrichment. 

In summary, the ADM1 has been proved to be helpful in the full-scale 
biogas plants to simulate the organic waste treatment processes 
(Donoso-Bravo et al., 2020) and to provide useful strategies for plant 
designers and practitioners by predicting possible problems and 
formulating effective mitigation schemes. 

6. Future research directions, perspectives and challenges 

The ADM1 still has some limitations. Firstly, although previous 
modifications of the model have broadened its scope, as shown in 
Table 4, there are still some unsatisfactory or even neglected areas. For 
example, during the co-digestion of WAS with beverage wastewater, 
although the biogas production was predicted well, the VFAs and total 
ammonia nitrogen (TAN) underperformed (Donoso-Bravo et al., 2020), 
and few studies have simulated the change of amino acids, sugars and 
LCFAs. In many cases, this is because the underlying mechanisms have 
not been fully investigated. Secondly, high VFAs or ammonia can inhibit 
hydrolysis (Chen et al., 2016), but there is very little literature 
describing this in an ADM1 context. Finally, as summarized in Table 4, 
most ADM1 simulations of other substrates (such as food waste and 
agricultural waste) besides sludge are still at the lab-scale level, and 
verification of the model in full-scale plants is lacking. Additionally, in 
order to improve biogas production, these substrates have been 
co-digested with sludge, causing changes in feed properties. However, 
model simulation studies on the co-digestion have also been performed 
in the lab-scale. 

To address the abovementioned limitations and promote the appli
cation of the ADM1, it is necessary to consider complete processes in the 
models. A more comprehensive consideration of the intermediate pro
duction and uptake processes is needed to improve the poor fitting of the 
current model to the intermediate products. Additionally, the inhibition 
functions of hydrolysis need further development to make the model 
work in both normal and extreme AD conditions. As the model is 
extended, the number of parameters involved is gradually increasing, 
which requires a fast and accurate methodology for parameter estima
tion and calibration. Moreover, some novel biogas upgrading processes, 
such as CO2 removal and CH4 enrichment, are still promising applica
tions of the modified ADM1 in future research. In addition to biogas, the 
ADM1 can be further modified and aid in understanding and optimizing 
the production of valuable intermediates such as ethanol, lactic acid, 
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Table 4 
Application of the ADM1 to different anaerobic digestion scenarios.   

Substrates Conditions Scale and 
Reactor 

Simulation items Simulation results and analysis Refs. 

Urban applications PS+WAS Part of a WTTP 
Mesophilic 

Full-scale 
CSTR 

Biogas, CH4% 
TS, VS 

The differences between the ADM1 
results are all within 2% 

Shang et al. 
(2005) 

Sewage, grey 
water, black water 
and faeces 

Part of urban 
sanitation 
Low and high 
temperature (15 
- 35 ◦C) 

Full-scale; 
UASB + UASB 
septic-tank 

CH4 flow, CH4% 
COD, COD 
removal 

Determination of a suitable design for 
each system 

Elmitwalli et al. 
(2006) 

OFMSW + WAS Mesophilic Full-scale Biogas flow, 
CH4%, CO2% 
pH, COD, TVFA, 
IN, IC 

Acceptable simulating results Derbal et al. 
(2009) 

Domestic 
wastewater 

Mesophilic Pilot-scale 
UASB 

Biogas flow 
pH, TCOD, SCOD 

With average experimental values within 
10% of the simulated results 

Lohani et al. 
(2016) 

Municipal 
wastewater 

Mesophilic Full-scale CH4 flow 
COD, alkalinity, 
pH 

Acceptable simulating results Ozgun (2019) 

Urban wastewater Part of a WRRF 
Mesophilic 

Full-scale Biogas flow, 
CH4% 
COD, TSS, VSS, N, 
P 

Acceptable simulating results Baquerizo et al. 
(2021) 

Food waste Continuous 
mode 
Mesophilic 

Pilot-scale 
Two-stage 
(CSTR+ ADR) 

Biogas flow, 
VFAs, pH 

In CSTR: R2 (pH)>0.85, R2(biogas) =0.42 
In ADR: R2 (pH)=0.81, R2(biogas)=0.96, 
R2 (VFAs)=0.97 

Yu et al. (2012) 

Semi-continuous 
mode 
Thermophilic 

Lab-scale CH4 flow 
pH, TCOD, 
acetate, NH4

+

Average absolute percent relative error 
based on methane optimization: 13.7% of 
CH4, 9.4% of pH, 58.2% of NH4

+, 110.2% 
of ammonia, 70.16% of TCOD 

Atallah et al. 
(2014) 

Fruit and 
vegetable wastes 

Semi-continuous 
mode 
Mesophilic 

Lab-scale 
CSTR 

Biogas flow 
pH, VS 

Acceptable simulating results Garcia-Gen 
et al. (2015) 

Food and garden 
waste 

Thermophilic Lab-scale 
CSTR 

CH4 flow 
NH4

+, VFAs 
Simulate the optimal feedstock 
composition for CH4 production 

Fitamo et al. 
(2016) 

Food waste +WAS Semi-continuous 
mode 
Mesophilic 

Lab-scale 
CSTR 

CH4 flow 
pH, TAN, COD 

Nash Sutcliffe Efficiency 
Coefficient=0.76–0.82 Correlation 
Coefficient=0.9–0.96 Root Mean Squared 
Error=0.09–0.12 

Montecchio 
et al. (2019) 

Industrial applications Corn processing 
wastewaters 

Mesophilic Full-scale 
EGSBR 

CH4 flow 
pH, COD 

The mean absolute relative error values 
are 18%, 10%, and 1%, respectively for 
methane production, COD and pH 

Ersahin et al. 
(2007) 

Olive mill 
wastewater and 
solid waste 

Semi-continuous 
mode 
Mesophilic 

Lab-scale 
Tubular 
digesters 

Gas flow, CH4%, 
CO2% 
pH, TVFA 

Acceptable simulating results; the reactor 
failure at high OLR and short HRT was 
predicted by model 

Boubaker and 
Ridha (2008) 

Evaporator 
condensate from 
pulp mill 

Semi-continuous 
mode 
Mesophilic 

Lab-scale 
5 L glass 
contact CSTR 

CH4 flow, CH4% 
SCOD, COD 
removal, pH, VFA 

Acceptable simulating results Silva et al. 
(2009) 

Opium alkaloid 
effluents 

Continuous 
mode 
Mesophilic 

Lab-scale 
UASB 

CH4 and CO2 flow 
pH, COD 

Acceptable simulating results except 
biogas flows in the latter periods 

Dereli et al. 
(2010) 

Starch wastewater Continuous 
mode 
Mesophilic 

Lab-scale 
UASB 

CH4 flow 
Lactate, VFAs, 
COD 

Acceptable simulating results Hinken et al. 
(2014) 

Vinasse Mesophilic Lab-scale 
3.5 L UASB 
reactor 

Biogas and H2S 
flow 
COD, pH, SO4

2− , 
VFAs 

Acceptable predictions; predict failure of 
AD when the sulfate loading rate 
increased 

Barrera et al. 
(2015) 

Part of biogas 
plant 
Mesophilic 

Full-scale 
covered in- 
ground 
anaerobic 
reactor 

Biogas flow, H2S 
%, CH4% 

The values of relative absolute error are 
under 20% 

Silva Neto et al. 
(2019) 

Continuous 
mode 
Thermophilic 

Lab-scale H2 flow 
Lactate, VFAs 

The stability of the Markov Chain was 
greater than 96%; modelling combined 
with microbial analysis 

Couto et al. 
(2022) 

Confectionery 
effluents 

Mesophilic Full-scale 
EGSBR 

CH4 flow 
COD, TVFA, pH 

MRAE for COD, CH4 flow, TVFA and pH 
were 22%, 16%, 29% and 1% 

Dereli (2019) 

Industrial 
wastewater 

Mesophilic Lab-scale 
AnMBR 

CH4 flow 
Inhibitions by 
free ammonia and 
cations 

Long SRT values cause high CH4 rate for 
MBR; inhibitions of free ammonia and 
cations to osmosis membrane 

Song et al. 
(2018) 

(continued on next page) 
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and VFAs. In addition, chain elongation is a potential process for the 
production of valuable biochemicals and biofuels, such as caproate and 
caprylate, from organic wastes. However, the ADM1 model has not been 
applied in this area. Because of the open structure and common 
nomenclature of the ADM1, the model may be valuable in other fields as 
well. 

In the long term, with the development of modern instrumental 
analytical technology, especially the molecular biological technology, a 
deeper understanding of the mechanism of the anaerobic fermentation 
and digestion processes will be achieved. It is necessary to continuously 
improve the ADM1 based on this deeper understanding, so that it can 
more accurately simulate these anaerobic processes. 

7. Conclusions 

The ADM1 serves as a robust and versatile tool for evaluating the 
performance of anaerobic treatment processes. This review aims to 
enhance the current understanding of the ADM1 and establish a solid 
foundation for future model development. The main conclusions derived 
from this review can be summarized as follows:  

(1) The key elements of the ADM1, including components, processes, 
stoichiometric coefficients, kinetic expressions and the relevant 
parameters, have undergone modifications to serve varying 
purposes since the original model was proposed.  

(2) Modifications to the model structure have predominantly focused 
on extending its scope to include components and processes that 
were absent in the original model. Notable modifications include 
the incorporation of uptake of lactate and ethanol, nitrate 
reduction, phosphorus-iron-sulfur transformation and SAO. 

Furthermore, the IWA Physicochemical Model has been proposed 
to encompass physicochemical processes, incorporating such 
factors as ion activity, ion pairing and precipitation.  

(3) Microbial effects on hydrolysis have been accounted for by 
replacing first-order kinetics with Contois kinetics. However, a 
more comprehensive exploration of high VFA or ammonia in
hibitions on hydrolysis is needed in the future.  

(4) Variable stoichiometric systems, tailored to redox conditions and 
pH, offer improved accuracy in describing acidogenesis of sugars 
compared to using constant stoichiometric coefficients.  

(5) The parameters have been estimated to minimize errors between 
the experimental data and model predictions by either “trial and 
error” approach or dedicated optimization algorithms. The pa
rameters related to hydrolysis and methanogenesis have been 
most frequently adjusted to enhance the accuracy of AD process 
simulations. 

(6) The ADM1 has a versatile range of urban, agricultural and in
dustrial applications. In addition to AD processes, the modified 
model can also be used for fermentation and biogas upgrading 
processes. However, there is still a lack of full-scale model ap
plications to substrates other than sewage sludge.  

(7) It is highlighted that the ADM1 can be further developed based on 
the in-depth understanding of the anaerobic treatment processes 
of organic wastes and the need to recover of valuable products. 
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Table 4 (continued )  

Substrates Conditions Scale and 
Reactor 

Simulation items Simulation results and analysis Refs. 

Mesophilic Full-scale 
Internal 
circulation 
reactor 

CH4, CO2 and H2S 
flow 
pH, TVFA, COD, 
SO4

2− , IN (NHx), 
IP (HxPO4

3-x) 

Average deviations <15% Feldman et al. 
(2018) 

Agricultural applications Sweet sorghum 
extract 

Batch mode 
Mesophilic 

Lab-scale 
1350 mL flasks 

H2, flow 
pH, VFAs 

Acceptable simulating results except 
overestimated pH 

Antonopoulou 
et al. (2012b) 

Continuous 
Mesophilic 

Pilot-scale 
Two-stage 
CSTR 

CH4 and biogas 
flow 
pH 

The deviation values for CH4: 1.9% (15d 
HRT) and 1.1% (10d HRT); the deviation 
of pH and CH4%<5% 

Antonopoulou 
et al. (2012a) 

Grass silage Semi-continuous 
mode 
Mesophilic 

Lab-scale 
35 L 
fermenters 

Gas flow and 
composition, H2 

pH, TS, VFAs 

Final square error sum=28.3 Wichern et al. 
(2009) 

Mesophilic Lab-scale 
Two-loop 
reactor 

Biogas flow, 
CH4%, CO2%, 
TN, NH4

+, VFAs 

Acceptable simulating results (75% 
coverage) except CH4% and CO2% 

Koch et al. 
(2010) 

Vegetable crop 
residues 

Batch mode 
Mesophilic 

Lab-scale 
500 ml flasks 

CH4  R2 (CH4) =0.982 Li et al. (2021c) 

Dairy manure Semi-continuous 
mode 
Mesophilic 

Lab-scale 
bench-scale 
digester 

Biogas flow, 
CH4%, CO2% 
COD reduction, 
NH4

+, VFAs 

CH4%, CO2%, TVFA and COD reduction 
fit well; Biogas and NH4

+ were 
overpredicted 

Page et al. 
(2008) 

Mesophilic Full-scale 
plug-flow 
digesters 

Biogas flow, 
CH4%, CO2% 
COD reduction, 
NH4

+, VFAs 

Biogas, biogas composition and COD fit 
well; VFAs and NH4

+ were overpredicted 

Pig manure Semi-continuous 
mode 
Mesophilic 

Lab-scale CH4 flow 
SCOD, NH4

+, PO4
3−

R2(methane)=0.92; R2(SCOD)=0.852; 
R2(NH4

+-N) =0.728; R2(PO4
3− ) =0.685 

Li et al. (2020) 

Dairy manure +
Mushroom 
substrate 

Semi-continuous 
mode 
Mesophilic 

Lab-scale 
CSTR 

CH4 flow 
pH 

Acceptable simulating results Shi et al. (2014) 

PS: primary sludge;. 
OFMSW: organic fraction of municipal solid waste;. 
TPAD: temperature-phased anaerobic digestion;. 
EGSBR: Expanded granular sludge bed reactor;. 
ADR: advective-diffusive reactor. 
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