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Abstract The biosolids management is becoming an

increased concern for the wastewater sector in recent

times due to production of large volume of biosolids,

their higher processing costs and the presence of

emerging contaminants. The pyrolysis of biosolids is

gaining significant interest in the industry sector as

well as research community over the last decade due to

its ability to reduce biosolids volume, produce high-

value biochar product andminimise the risk associated

with contaminants. This paper aims to critically

review the literature on biosolids management tech-

niques and their current challenges, biosolids charac-

teristics and its suitability for pyrolysis, pyrolysis

product characterisation from different reactor designs

and biochar application as a soil amendment, adsor-

bent and catalyst. The efforts have also been made to

critically summarise studies on the process modelling

activities and techno-economic assessments including

some key pilot-scale demonstrations of recent time.

The review concludes that biosolids to biochar can be

an effective alternative to biosolids management;

however, its commercial viability is limited in the

current scenario. In the end, efforts have been made to

highlight current challenges including research gaps

and future perspectives in improving its commercial

viability.
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1 Biosolids management and its challenges

Biosolids are the solid by-product formed after the

treatment of sewage sludge. Biosolids usually contain

solids between 15 and 90% (Fonts et al. 2012; Furness

et al. 2000; Kemmer et al. 1971; Patel et al. 2019c).

Biosolids are composed of organic as well as inorganic

materials including ash and minerals. Biosolids may

contain a good amount of macronutrients, such as

nitrogen, phosphorus, potassium, calcium, magnesium

and sulphur as well as micronutrients such as copper,

zinc, iron, boron, molybdenum and manganese (Khan

et al. 2013b; Patel et al. 2018, 2019a).

Over the past two decades, biosolids production has

increased worldwide as a result of population growth,

new wastewater plants implementation and collection

systems and strict regulations of environmental legis-

lation (Arulrajah et al. 2011; O’kelly 2005). The

biosolids production in Australia reached to 329,000

dry tonnes in 2017, which was 6% more than the

biosolids production (310,000 dry tonnes) noted in

2015 (ANZBP 2017). Majority of the biosolids in

Australia are beneficiated to agricultural land due to

high nutrient and organic carbon values. It is estimated

that the municipal wastewater produced globally

contains enough nutrients to replace 25% of the

nitrogen and 15% of the phosphorus currently used to

fertilise the agricultural land in the form of synthetic

fertilisers (Andersson 2016). The other beneficial

applications of biosolids are land rehabilitation, land-

scaping (compost) and incineration (Agrafioti et al.

2013; ANZBP 2017; Faria et al. 2018). Non-benefi-

ciated biosolids are either stockpiled, landfilled or

discharged in the ocean. In Australia, * 75% of the

biosolids are used for agricultural land while 11% are

used for land rehabilitation, and 14% are either

landscaped in the form of compost, stockpiled, applied

to landfills or discharged to the ocean (ANZBP 2017).

Incineration is not considered as favourable in Aus-

tralia due to the potential risk of harmful gas emissions

(Barry et al. 2006; Darvodelsky and Bridle 2012).

Biosolids production in United States in 2019 was *
4.27 million dry metric tonnes. In United States, *
51% of the biosolids are used for land application,

22% are used for landfilling, 16% are used for

incineration, 10% are used under other management

practices and 1% is used as surface disposal.

Biosolids can be used as wet or dry. Based on their

wetness, biosolids are also referred to as wet or dried

biosolids. There are total of four types of biosolids

based on their post-treatment method. Their informa-

tion is provided below (Agency 1999).

1. Mainstream biosolids (i.e. biosolids obtained after

dewatering, drying and/or stockpiling)

2. Pelletised biosolids

3. Lime amended biosolids

4. Composted biosolids

Mainstream biosolids can be further categorised

into five types as below based on their origin in the

Waste Water treatment plant (WWTP) (Agency

1999).

1. Non-digested biosolids (i.e. primary or activated)

2. Digested biosolids (obtained after digestion)

3. Lagoon biosolids (obtained after digestion in

lagoon based treatment plants)

4. Dried biosolids (obtained after centrifuge, solar

dryer and/or drying pan)

5. Stockpiled biosolids (obtained from stockpile)

Biosolids are generally classified according to their

treatment (microbiological) and contamination grade.

Biosolids are classified differently based on different

State, Territory or National Guidelines. Environmen-

tal Protection Agencies (EPAs) are responsible for the

development of guidelines for biosolids’ application

(McLaughlin et al. 2007). Different Australian State

guidelines have specified three to four treatment

grades and two to three contaminant grades. The

overall combined grade (treatment and contaminant)

helps in identifying where any particular biosolids can

be applied (McLaughlin et al. 2007).

1.1 Presence of contaminants in biosolids

The increasing use of new chemicals in day to day life

has caused concerns of them being ended up in

biosolids and further contaminating soil and ground-

water via biosolids’ land application (Choudri et al.

2018; Dumontet et al. 2001; Haynes et al. 2009; Lu

et al. 2012b; Pritchard et al. 2010; Scher et al. 2018).

Particularly, the presence of micro-plastics, pharma-

ceuticals, pesticides, and per- and poly-fluoroalkyl

substances (PFAS) (Choudri et al. 2018; Dorrance

et al. 2017; Dumontet et al. 2001; Haynes et al. 2009;

Pritchard et al. 2010; Scher et al. 2018) in biosolids

cause a major concern for its land application in recent

times. This is due to the fact that uptake of these
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emerging contaminants by vegetation might cause

human health risks and possible contamination in the

food-supply chain.

1.2 Drawbacks of existing management options

Current biosolids management options have some

shortcomings. For example, stockpiling of biosolids

was considered as a favourable option by several water

utilities in the past with large portion of free land

availability. However, this is not recommended by

EPA as a long-term option due to potential contam-

ination, health risks and increasing production of

biosolids (Agency 1999). Incineration, despite offer-

ing significant advantages such as low cost, high

energy recovery and potential destruction of contam-

inants and pathogens; may emit harmful substances

such as acid gases, dioxins, particulate matter and NOx

(Chen and Yan 2012; Hjelmar 1996; Marani et al.

2003; Roy et al. 2011). Therefore, it is also not

considered as a long-term option for waste manage-

ment in Australia and many countries (Barry et al.

2006). Landfilling was a low-cost option for managing

all types of wastes including biosolids in the past.

However, increasing risk of contamination of ground-

water in long-term, rise in the tipping fees and

shortage in landfilling sites have made this option less

favourable in recent times (AWA 2012; Barry et al.

2006; Haynes et al. 2009). Biosolids are rich in

decomposable organic matter and they exacerbate

CH4-rich greenhouse gases when they are landfilled or

stockpiled (Lewis and Gattie 2002). They also gener-

ate significant CO2 and other toxic gas emissions when

incinerated. Therefore, under the current climate

change scenario, landfilling, long-term stockpiling

and incineration of biosolids are no longer accept-

able (Agency 1999; Lu et al. 2012b). Composting of

biosolids may be considered as one of the most

favourable biosolids’ management options. However,

there is only a limited capacity of biosolids that can be

used in this process (AWA. 2012; Barry et al. 2006).

1.3 Decentralised production of biosolids

Wide distribution of wastewater treatment plants

poses the biggest challenge in biosolids management

and transport. In Australia alone, there are 1200

wastewater treatment plants (Hill et al. 2012). These

numbers for the United States are roughly 15,000

(CSS 2019). Biosolids, as described earlier, can have a

very large amount of moisture. Moreover, the avail-

ability of the agricultural land in close proximity to the

wastewater treatment plant is not always the case.

Therefore, the biosolids land application may incur

huge transportation costs and associated emissions

(Barry et al. 2006; Pritchard et al. 2010). Average

biosolids management costs, including monitoring

and transporting in Australia alone may vary from

$120 to $280/dry tonne (AWA 2012).

2 Pyrolysis: an alternative biosolids management

option

Pyrolysis is gaining immense interest in recent times

for biosolids management (Fonts et al. 2012). The

principle goal of pyrolysis is to reduce the volume of

biosolids and produce energy or value-added products

from the organic fraction of the waste while having

minimal environmental impacts. It has the potential to

partially/completely destruct contaminants such as

pharmaceuticals, micro-plastics and PFAS while may

be able to immobilise heavy metals in the char matrix

(Bioforcetech 2019a; GHD 2019; Patel et al. 2019b;

Surti 2019).

Pyrolysis of biosolids produces three different

products, such as biochar, pyrolysis–gas and pyroly-

sis-oil. Pyrolysis occurs in an oxygen-free environ-

ment (Fonts et al. 2012; Patel et al. 2019b). It is an

endothermic process in contrast to other processes,

like incineration or gasification, which are either

exothermic or auto-thermal. Pyrolysis can reduce

biosolids’ volume up to 70%, stabilises organic

content and produces fuel and valuable liquid chem-

icals (Fonts et al. 2012; Inguanzo et al. 2002).

Furthermore, pyrolysis of biosolids enables heavy

metals to be encapsulated in the pyrolytic char, which

are more resistant to leaching than those from the ash

obtained through the gasification/incineration of

biosolids (Caballero et al. 1997; Conesa et al. 1998;

Fonts et al. 2012; Furness et al. 2000). Gas products

from pyrolysis are low in NOx, and SOx as well as

organic pollutants which makes pyrolysis process

environmentally friendly. Moreover, it sequesters

carbon in biochar, decreases greenhouse gas emissions

and contributes to a cleaner environment (Fonts et al.

2012; Tripathi et al. 2016; Wang et al. 2012).
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3 Novelty/originality of the current review

Pyrolysis of biosolids to produce biochar has been

extensively studied in the last decade. Also, there are

some recent review papers published on this topic

(Callegari and Capodaglio 2018; Li et al. 2019d; Liu

et al. 2018). For example, Callegari and Capodaglio’s

(Callegari and Capodaglio 2018) review on sludge

pyrolysis mainly focused on identifying relationships

between char, bio-oil, and syngas fractions in different

process operating conditions, general char properties,

and possible beneficial uses. Liu et al. (2018) focused

on comparing the characteristics of biosolids’ biochar

to biomass’ biochar and reviewed specific applications

of biosolids’ biochar. Paz-Ferreiro et al. (2018) crit-

ically reviewed options for the management of

biosolids with a focus on pyrolysis and the application

of the biosolids’ biochar into the soil. In terms of

originality and novelty, this paper for the first-time

critically reviews and compare biosolids pyrolysis

research carried out in lab- to bench and pilot-scale

reactor designs (i.e. TGA, fixed bed, fluidised bed).

Furthermore, this review is focused on summarising

some advanced applications of biosolids’ biochar as

adsorbent and catalyst, energy storage and energy

generation material in addition to soil amendment.

Efforts are also made to critically review the work

performed on process modelling and development,

techno-economic analysis and large scale demonstra-

tions on biosolids pyrolysis. Finally, current chal-

lenges, research gaps and future perspectives

providing further directions to commercialise pyroly-

sis for converting biosolids to biochar are highlighted.

4 Pyrolysis process types and product distribution

In the pyrolysis process, biosolids are thermally

decomposed without being exposed to oxygen envi-

ronment where multiple reactions occur simultane-

ously (Fonts et al. 2012). The pyrolysis mainly

consists of two stages of decomposition reactions

called primary and secondary pyrolysis (Fonts et al.

2008a, b). Biosolids components are broken and

devolatilised in the primary pyrolysis by heat effect

into its main constituents. In the first stage, various

groups of hydroxyl, carbonyl and carboxyl are formed.

The devolatilisation process of biosolids consists of

dehydration, dehydrogenation and decarboxylation

(Fonts et al. 2008a, b, 2012). Once the primary

reactions are completed, the secondary pyrolysis

process begins, and this is the critical step of pyrolysis

process where cracking of large molecules takes place

transforming biosolids into biochar or gases, such as

CO, CH4, CO2 and other gases. Some condensable

volatiles components are produced and they are

known as pyrolysis-oil. This secondary pyrolysis

cracking is often called as thermal cracking or

catalytic cracking, depending on the conditions of

pyrolysis and catalysts used (Fonts et al.

2008a, b, 2012; Liu et al. 2017; Patel et al. 2019b).

Pyrolysis processes are mainly divided into slow

and fast pyrolysis. The operating conditions such as

reaction temperature, heating rate, particle size and

residence time are different in each of these pyrolysis

processes, which are summarised in Table 1.

4.1 Slow pyrolysis

Slow pyrolysis has been used for biochar production

for a long time. In slow pyrolysis, biosolids are

pyrolysed at a temperature between 300 and 900 �C
(Fonts et al. 2012; Manara and Zabaniotou 2012). The

heating rate in the slow pyrolysis is generally kept

between 0.1 and 1 �C/s and residence time vary from

an hour to days, as shown in Table 1. Slow pyrolysis

promotes the formation of biochar, but nearly an equal

amount of pyrolysis-oil and gaseous products are also

formed during the process (Fonts et al. 2012; Manara

and Zabaniotou 2012; Patel et al. 2019b). Lower

heating rates and longer residence times provide the

Table 1 A summary of pyrolysis processes, operating condi-

tions and their product distribution

Process Slow pyrolysis Fast pyrolysis

Reaction temperature (�C) 300–900 300–1000

Heating rate (�C/s) 0.1–1 10–1000

Residence time Hour-days \ 2 s

Particle size (mm) 5–50 \ 1

Feed stock size Coarse Finely ground

Py-oil yield (%) 20–50 60–75

Biochar yield (%) 25–35 10–25

Py-Gas yield (%) 20–50 10–30

(Bahng et al. 2009; Demirbas and Arin 2002; Fonts et al. 2012;

Homagain et al. 2014; Li et al. 2013; Manara and Zabaniotou

2012; Yan et al. 2005)
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appropriate atmosphere that is favourable for the

secondary reactions. This eventually leads to

increased biochar formation (Ábrego et al. 2009;

Fonts et al. 2012; Patel et al. 2019b). In addition,

longer residence time also enables the increase in

vapour yield during the secondary reaction (Fonts

et al. 2012; Patel et al. 2019b).

4.2 Fast pyrolysis

Fast pyrolysis is mainly used for pyrolysis-oil pro-

duction. For fast pyrolysis, biosolids are generally

heated up to 300–1000 �Cwith a high heating rate that

ranges from 10 to 1000 �C/s and a short residence

time, which is less than two seconds (Alvarez et al.

2015a). The oil produced from fast pyrolysis has a

heating value of nearly half of heavy fuel oil, has

higher oxygen and nitrogen content which makes it

necessary to upgrade before using it in vehicles

(Alvarez et al. 2015a). Fast pyrolysis can be divided

into three stages. The first is primary pyrolysis, where

the decomposition reaction is followed by secondary

cracking and re-polymerisation, as shown in Fig. 1

developed for woody biomass.

4.3 Pyrolysis products

Pyrolysis of biosolids produces solid (i.e. biochar), gas

(i.e. pyrolysis gas) and liquid (i.e. pyrolysis oil)

products. Their average yields are summarised in

Table 1.

The biochar is a carbonaceous solid product that is

mostly used as an adsorbent, fuel, catalyst and/or soil

amendment (Agrafioti et al. 2013; Fonts et al. 2012;

Hossain et al. 2011; Manara and Zabaniotou 2012).

The pyrolysis–gas consisting of CH4, CO2, H2 and CO,

as well as few other low-molecular gases, can be used

for heat generation, in a gas engine, after proper

cleaning, to produce electricity or can be converted

into fuels via further processing such Fischer–Tropsch

synthesis (Ail and Dasappa 2016; Conesa et al. 1998;

Davis and Occelli 2007; Inguanzo et al. 2002;

McNamara et al. 2016; Wright et al. 2008). Pyroly-

sis-oil, an extremely complex mixture of multiple

small and long-chain hydrocarbons, is the third

product of pyrolysis. Pyrolytic-oils comprising of four

major chemical groups are formed after cooling in the

condenser: (i) water, (ii) oxygen-containing com-

pounds (e.g., alcohols, ketones, acids, phenols, sugars)

(iii) aliphatic and aromatic hydrocarbons, and (iv)

nitrogen containing compounds (e.g. pyrazine, pyr-

idine and amines) (Alvarez et al. 2016; Fonts et al.

2012; Kim and Parker 2008; Manara and Zabaniotou

2012; Shen and Zhang 2003). Pyrolysis-oil is typically

dark brown in colour with a high viscosity. It is

corrosive in nature and has high water, sulphur and

nitrogen content. It requires upgrading prior using as a

fuel (Kim and Parker 2008; Shen and Zhang 2003; Xie

Fig. 1 Representation of the reaction paths for fast pyrolysis of wood (Venderbosch and Prins 2010)
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et al. 2014). In addition, pyrolysis-oil is also found to

be chemically unstable since they consist of com-

pounds containing reactive oxygen. Therefore, it

needs proper storage or should be immediately used.

The main use of pyrolysis-oil without upgradation

could be in boilers to generate steam or heat (Fonts

et al. 2012; Shen and Zhang 2003). The properties of

pyrolysis-oil, such as density, miscibility and viscosity

can be controlled by selecting pyrolysis conditions

(Fonts et al. 2012; Manara and Zabaniotou 2012;

McNamara et al. 2016). Of the major products

produced from pyrolysis, biochar offers significant

promises. Pyrolysis-oil can be used as a low-grade

liquid fuel in boilers or require further upgradation for

it to be used in transport sector.

5 Biosolids characteristics and its suitability

for pyrolysis

The proximate and ultimate analysis is an important

measure, especially in the assessment of the properties

of the material for it to be used in the thermal

conversion processes.

5.1 Proximate and ultimate analysis

Proximate analysis is the simplest and frequently used

analytical technique. The proximate analysis provides

information related to (i) moisture, (ii) volatile matter,

(iii) fixed carbon and (iv) ash—generally referred to as

inorganic residues remain after burning. The ultimate

analysis provides more extensive information than

proximate analysis. In this case, the material is

characterised by its carbon (C), hydrogen (H), oxygen

(O), nitrogen (N) and sulphur (S) contents. The

ultimate analysis is also used to determine the

feedstock’s heating value.

The summary of the proximate analysis of the

various biosolids is presented in Table 2. On average,

the contents of C, O, H, N and S in biosolids are

33.8%, 25.4%, 5.4%, 4.8% and 1.2%, respectively.

The nitrogen and sulphur contents in biosolids gener-

ally vary between 2 to 10 wt% and 0.5 to 2 wt%.

Biosolids seem to have higher oxygen content ranging

between 15 and 50 wt%. According to the Table 2,

volatile matter in biosolids can vary between 46 and

75 wt% while ash can vary between 23 and 45%. The

biosolids summarised in Table 2 present the average

ash content of 36.3%. Usually biosolids contain higher

ash content than biomass such as wood and organic

residues (Li et al. 2019a). This higher ash content in

biosolids can promote higher yield and greater accu-

mulation of mineral nutrients in biosolids biochar.

Heavy metals in biosolids might be beneficial in

making biochar catalyst. The heating values in

biosolids vary between 12 to 22 MJ/kg which were

estimated based on equation proposed by Channiwala

and Parikh (Channiwala and Parikh 2002). These

heating values suggest that biosolids if dried reason-

ably (up to 50–60% moisture) can be pyrolysed auto-

thermally without the need of any external energy

(Patel et al. 2019c).

5.2 Biosolids composition and thermal analysis

Li et al. (2015) observed that organic content in

biosolids is mainly composed of protein (24–42%),

carbohydrate (7–18%) and lipid (1–14%). Chen et al.

(2007) also reported similar findings for biosolids with

61% protein, 11% carbohydrate, less than 1% lipid and

remaining 27% to be unknown constituents.

Thermogravimetric Analysis (TGA) is a standard

thermal analysis method used by the researchers

where mass changes are measured at a controlled

increase in temperature. This technique is particularly

useful for understanding the thermochemical conver-

sion behaviour of polymeric materials and organic

solids. TGA data are generally used for deriving

reaction mechanisms, estimating kinetic parameters

and determining inorganic (e.g. ash) and organic

content in the sample (Urych and Smolinski 2016;

Wang et al. 2018; Xu et al. 2017; Zhang et al. 2014b).

Several researchers have studied the behaviour of

biosolids during pyrolysis using the thermogravimet-

ric technique (Alvarez et al. 2015a, 2015b; Font et al.

2001; Gao et al. 2014; Magdziarz and Werle 2014;

Nowicki and Ledakowicz 2014; Shao et al. 2007).

TGA, DTG and DSC curves of biosolids sample

reported by Gao et al. (2014) are highlighted in Fig. 2.

The initial 5% of weight loss below 120 �C is mainly

due to the evaporation of water. The second stage of

weight loss, which is approximately 65% of the total

weight, occurs in the range of 130–500 �C. In this

temperature range, the components such as proteins and

carboxyl groups char yield from 46are decomposed. In

the temperature range of 500–700 �C, generally referred
to as the third stage, the decomposition of inorganic
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materials occurs. Similar findings are also reported by

Alvarez et al. (2015a, b). They reported stages of

pyrolysis slightly differently than Gao et al. (2014).

Alvarez et al. (2015a, b) concluded that pyrolysis of

biosolids occursmainly in three stages: (1) the first stage

of thermal decomposition is carbohydrate pyrolysis that

occurs at around 255 �C, after moisture evaporation at

100–200 �C; (2) the second stage is around 300 �C,
which is linked to lipid breakdown and (3) third stage is

related to protein and lignin breakdown between 360 �C
and 525 �C. Font et al. (2001) suggested that decom-

position of dead organisms and biodegradable organic

matter may occur between 200 and 300 �C and organic

polymers present in the biosolids may decompose in the

temperature range of 300–450 �C. Patel et al. (2018)
found that pyrolysis of Australian biosolids can be

divided mainly into three stages such as: (1) dehydra-

tion, where around 12–13% mass is lost due to

evaporation of water molecule from room temperature

to 180 �C, (2) the second stage is devolatilisation stage

in which 30% mass is lost between 180–350 8C. They
observed two peaks in DTG profile in this temperature

range and concluded that the first peak indicates the

decomposition of the easily biodegradable carbohy-

drate-rich volatile fraction of organic matter and dead

microorganisms (temperature range from 190 to

300 �C) and the second peak shows the decomposition

of organic polymer fractions rich in lipids (temperature

up to 350 �C) and (3) third stage occurs between 360

and 900 �C, in which protein, lignin and polymers are

decomposed.

Biosolids composition and understanding on its

pyrolysis behaviour via thermal analysis is extremely

useful in designing the pyrolysis process. From the

published literature on composition and thermal

analysis, it can be suggested that higher carbohydrate,

lipid and protein contents over lignin may make

biosolids a suitable candidate for low temperature

pyrolysis. However, higher inorganic content (i.e. ash)

may require high temperatures for biochar pores to be

fully developed.

6 Effect of process parameters (i.e. reaction

conditions) in different reactor designs

Reactor designs and reaction conditions in the pyrol-

ysis process are extremely important. The product

distribution and their quality in pyrolysis are primarily

dependent on the process parameters such as temper-

ature, heating rate and residence time. Literature has

reported several experimental studies using TGA and

different reactor designs such as fixed bed and

fluidised bed reactors to understand the effect of

process parameters on biosolids pyrolysis perfor-

mance (Fonts et al. 2008a, b, 2009; Gao et al. 2014;

Fig. 2 TGA, DTG and DSC curves for thermal analysis of biosolids (Gao et al. 2014)
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Kan et al. 2016; Kim and Parker 2008; Lu et al.

1995, 2013; Park et al. 2008; Patel et al.

2019a, b, 2018; Shao et al. 2010; Shen and Zhang

2003; Xie et al. 2014). TGA represents the highly

controlled intrinsic environment. However, it must be

noted that TGA use very little sample (in milligram)

and operates at much lower heating rates than a large

scale pyrolyser. Therefore, studies on lab and bench-

scale fixed bed and fluidised bed rigs with higher

amount of sample and desired heating rate are

important to derive the information on physico-

chemical transformations (including morphological

changes) that may occur in a real pyrolysis environ-

ment. It should be noted that fixed bed and fluidised

bed lab- and bench-scale rigs might be suffering from

poor gas–solid contact, mainly due to diffusional

barrier in the case of fixed bed while poor fluidisation

in the case of fluidised bed. Therefore efforts should

have been made to overcome them. In this section we

have summarised and compared the literature related

to slow pyrolysis of biosolids mainly in TGA, fixed

bed and fluidised bed rigs.

6.1 TGA study

6.1.1 Effect of heating rate

In biosolids pyrolysis, heating rates play a significant

role as the rate of heat affects the composition and

nature of the final product. Generally, standard TGAs

can only perform heating rates up to 10–50 �C /min,

which can mimic only slow pyrolysis conditions. Non-

flexibility of TGAs in changing the heating rates make

them less favourable to study the effect of heating rate

in pyrolysis studies. Therefore, limited literature is

reported on this topic. The effect of heating rates (10,

40, 70, and 100 �C/min) in gas evolution, oil compo-

sition and functional groups of the pyrolytic biochar at

a temperature of 500 �C is studied using TGA with

micro-GC for online gas analysis by Kan et al. (2016).

Dried biosolids after digestion obtained from Sydney

Water were used in this study. The results indicated

that at 300 �C and below, carbon dioxide is the major

gas that is evolved, and its evolution rate increases

steeply with increasing heating rate. Carbon monoxide

and hydrogen formation also increase with the

increase in heating rate, but carbon monoxide evolu-

tion becomes significant at temperatures above

600 �C. The investigated heating rates (10 and

100 �C/min) had no clear effect on the functional

groups in the produced biochar and the composition of

the pyrolysis oil. Xiaohua and Jiancheng (2012) found

that the heating rate has a little effect on the activation

energy and reaction rate in biosolids pyrolysis.

6.1.2 Effect of catalyst

Catalysts can reduce the activation energy as well as

alter the distribution of pyrolysis products in solid,

liquid and gaseous phases. The pyrolysis catalysts can

be divided into mainly two groups: (i) primary cata-

lysts, which are mixed with the biosolids before

pyrolysis and (ii) secondary catalysts, which are not

mixed with biosolids but are located next to the main

pyrolysis reactor (Liu et al. 2017). For TGA study,

catalysts are generally mixed with biosolids prior to

experiments. Shao et al. (2010) performed TGA

experiments on dried biosolids to evaluate the effect

of catalysts on biochar yield in slow pyrolysis at a

heating rate of 10 �C/min. The catalysts used in their

study were Fe2O3, ZnO, Al2O3, CaO, and TiO2. They

observed that Al2O3, CaO and TiO2 encouraged

organic matter degradation, which resulted in lower

biochar amounts. In contrast, Fe2O3 and ZnO inhibited

organic matter decomposition in demineralized sludge

samples and resulted in increased biochar production.

The TGA study reported by Kim and Parker (2008)

and Xie et al. (2014) found a decrease in the biochar

yield with the use of zeolites and HZSM-5. In contrast,

biochar yield was found to increase with CaO as a

catalysts in their study. It was suggested that the

increase in the char yield with CaOmight be attributed

to the potential capture of CO2 by CaO in the lower

pyrolysis temperature. Based on the literature avail-

able on biomass pyrolysis, it can be noted that the

acidic catalyst generally increases the production of

pyrolytic biochar and reduces oil yield while biochar

yield increases in the presence of the basic catalysts

(Stefanidis et al. 2011; Wang et al. 2006; Zhang et al.

2009). Patel et al. (2019a) conducted TGA-FTIR study

in the presence of minerals such as zeolite, lime and

one metal oxide based synthetic catalyst (5% Co/

Al2O3). They observed that rate of devolatilisation

(i.e. decrease in biochar yield) can be ordered as

follows: 5% Co/Al2O3[ zeolite[ lime from TGA

study. From FTIR data they found that the catalytic

activity of 5% Co/Al2O3 is higher compared to

minerals for the production of light gases especially
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the concentration of CO2 because at lower pyrolysis

temperatures CO2 capture in these minerals.

6.2 Fixed bed reactor

6.2.1 Effect of temperature

Pyrolysis temperature is the main parameter affecting

the biochar yield. Fixed bed reactor offers great

flexibility in terms of process operation and changing

process parameters. Therefore, many studies are

reported with fixed bed pyrolysis in the literature.

Low pyrolysis temperature is generally suitable for

achieving higher biochar yield. Heavy hydrocarbons

from biosolids are cracked thermally due to secondary

reactions at higher temperatures, resulting in increased

oil and gas yields and decreased biochar yield. The

effect of temperature on the biochar yield with

different types of biosolids during the slow pyrolysis

of biosolids in fixed bed is presented in the Table 3. Lu

et al. (2013) studied wet biosolids with moisture

content as high as 80%. The biochar yields with wet

biosolids were found to be very low as the moisture

evaporated during the pyrolysis. However, when the

temperature was increased from 300 to 600 �C, the

biochar yield was found to be decreased by only 25%.

Dried biosolids in comparison to wet biosolids yielded

a higher amount of biochar. Nevertheless, only 30%

drop in biochar yield was observed when the pyrolysis

temperature was increased from 300 to 600 �C.
The surface area is an important characteristic of

biochar when used as a soil amendment or adsorbent

material. The surface area of biochar produced from

slow and fast pyrolysis of biosolids in a fixed bed

reactor at different temperatures is provided in Table 4.

The surface area was found to increase with increasing

pyrolysis temperature for both slow and fast pyrolysis.

However, in the case of slow pyrolysis, the surface

area increased rapidly compared to fast pyrolysis. For

example, biochar surface area increased from

20.27 m2/g at 600 �C to 67.60 m2/g at 900 �C in fast

pyrolysis while in slow pyrolysis surface area

increased from 10.21 m2/g at 600 �C to 122.04 m2/g

at 900 �C. The specific surface area of biochar is

related to biosolids structure, pore size distribution and

biochar density. The effect of temperature on the

surface area of biochar was also observed by other

researchers (Agrafioti et al. 2013; Ahmad et al. 2014;

Bridle and Pritchard 2004; Carey et al. 2015; Cha et al.

2016; Chen et al. 2014; Hossain et al.

Table 3 Yield of biochar produced from the fixed bed pyrolysis of biosolids at different temperatures

Biosolids type Location Moisture (%) Biochar yield (wt%) References

300 �C 400 �C 500 �C 600 �C

Wet biosolids Before digestion 83 12 10 10 9 Lu et al. (2013)

79 15 14 13 13

85 10 8 8 7

Dried biosolids Primary sludge 7 72.3 63.7 57.9 – Hossain et al. (2011)

Dried biosolids After digestion,

dewatering and drying

– 78 65 55 – Kim and Parker (2008)

Table 4 BET surface area (m2/g) of biochar produced from fast and slow pyrolysis of biosolids in fixed bed experiments at various

temperatures

Temperature (�C) BET surface area (SBET)

Fast pyrolysis (Chen et al. 2014) Slow pyrolysis (Ábrego et al. 2009)

600 20.3 10. 2

700 32.2 50.1

800 48.5 91.0

900 67.6 122.0
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2010, 2011, 2009; Inguanzo et al. 2002; Khan et al.

2013a; Lu et al. 2013, 2012a; Méndez et al.

2012, 2013; Paz-Ferreiro et al. 2012; Shimabuku

et al. 2016; Zielińska and Oleszczuk 2016; Zielińska

et al. 2015). There is a general agreement in the

literature that the increase in the temperature and

holding time leads to an increase in the biochar’s

surface area. However, high temperatures and holding

time can reduce the volume of mesopores due to

sintering. In general, biochar has a narrow micropore

distribution with a large surface area.

The overall weight percentage of C, N and H

decreased in the solids with the increase in the

pyrolysis temperature as a result of pyrogenic decom-

positions (Ábrego et al. 2009; Jin et al. 2017). A

further explanation of the decrease in carbon and

organic carbon is the formation of aromatic ring

clusters. This is responsible for the low H/C ratio

(Ábrego et al. 2009; Chen et al. 2014). Chen et al.

(2014) reported in a fixed bed reactor experiment that

the content of remaining H, N and O was 0.70%,

1.54% and 10.55% respectively at pyrolysis temper-

ature of 500 �C while it rapidly decreased to 0.11,

0.53% and 2.44% at 900 �C in the biochar produced

from biosolids. This further reduced H/C and O/C

atomic ratio and increased amorphous carbon. The

weight percentage of ash was found to increase with

the increase in the temperature. However, as a result of

pyrolysis, the overall bio-availability of heavy metals

such as Ni, Co, Pb, Cr and As greatly reduced (Khan

et al. 2013a; Méndez et al. 2012). Macro and micro-

nutrients retention into biochar is expected to be in the

range of 30–80%. For example, * 50% of N and[
70% of P and Fe were retained in the biochar matrix

from biosolids. The temperature played an important

role in retaining nutrients in the biochar matrix. Higher

temperatures were responsible for their release into

gas followed by their recovery in the condensed

aqueous phase. Table 5 summarises the change in

biochar composition with varying temperatures.

6.2.2 Effect of heating rate

Experiments conducted in the fixed bed reactor

demonstrated that biochar yield decreased during the

slow pyrolysis, when heating rate and temperature

were increased from 5 to 60 �C/min and 450 to

850 �C, respectively (Inguanzo et al. 2002). Gao et al.
(2014) investigated slow and fast pyrolysis of dried

biosolids in fixed bed reactor and found that biochar

yield decreased from 53.60 to 33.24%, when the

heating rate was increased from 8 �C/min (slow

pyrolysis) to 100 �C/min (fast pyrolysis), with an

increase in temperature from 450 to 650 �C (Fig. 3).

There is no study that reported on the effects of

heating rate on the biosolids biochar pore structure.

However, in biomass pyrolysis, Kambo and Dutta

(2015) reported that very high heating rate ([ 100 �C/
min) adversely affected the pores of the biochar as it

caused the natural biomass structures to fragment,

which resulted in pores being drastically reduced.

6.2.3 Effect of solid residence time

Solid residence time was found to have a significant

impact on products yield as well as quality. In slow

pyrolysis experiments of biosolids conducted in a

fixed bed reactor, it was observed that biochar yield

decreased with the increase in the solid residence time

and pyrolysis temperature (Agrafioti et al. 2013; Gao

et al. 2017). The effects of solid residence time on

BET surface area and micro-pore volume is high-

lighted in Fig. 4. BET surface area and micro-pore

area were found to increase with the increase in the

residence time, which reached to a maximum value at

2 h and then started dropping. The drop-in surface area

and micro-pore area might be attributed to the possible

sintering of the biochar particles due to extended

residence time. A slow pyrolysis with high solid

residence time and lower temperature is favourable to

obtain biochar with the superlative properties and

yield. This provides the best distribution of pores,

evaporation of volatile and water molecules and the

best possible adsorption properties (Agrafioti et al.

2013; Bandosz and Block 2006; Hossain et al. 2010;

Lu et al. 2013).

6.3 Fluidised bed reactor

6.3.1 Effect of temperature

Shen and Zhang (Shen and Zhang 2003) conducted

fluidised bed pyrolysis experiments using activated

sewage sludge obtained fromWestern Australia. They

studied the temperature range between 300 and

600 �C and observed that maximum oil yield was

obtained at 525 �C. From the GC–MS analysis, it was

concluded that carbohydrates and polyphenols are
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decomposed at this temperature and those are mainly

responsible to produce pyrolysis oil. Park et al. (2008)

studied dried biosolids obtained after digestion in a

fluidised bed reactor and observed that pyrolysis gas

was mainly composed of CO2, CO, CH4, and other

light hydrocarbons whereas pyrolysis oils were mainly

composed of acids, aldehydes, alcohols, and hydro-

carbon compounds. The pyrolysis oil produced from

biosolids pyrolysis is found to have a higher nitrogen

content and with the increasing temperature, the

nitrogen is converted into gas phase NH3.

Patel et al. (2019b) investigated the slow pyrolysis

of biosolids with an aim to produce biochar using a

bench-scale fluidised bed reactor which operated in

bubbling mode of fluidisation by varying pyrolysis

temperatures (500, 700 and 900 �C) as well as the type
of bed material (i.e. biochar, activated char and lime).

The analytical instruments such as GC–MS, SEM,

FTIR and BET were employed to characterise prod-

ucts. The activated char was found to be the most

suitable bed material due to its ability to crack down

unwanted aromatic compounds and to improve the

morphology of the resultant biochar. It was observed

in their study that biosolids pyrolysis might need a

slightly higher temperature than biomass pyrolysis to

open up the pore structure of biochar. Furthermore, it

was observed that the production of NH3, from organic

nitrogen of biosolids, can be helpful in reducing NOx

Table 5 Elemental composition and physical properties of biosolids derived biochar from fixed bed experiments

Compound Unit Biosolids Biochar

Pyrolysis Temperature Range �C

300–500 550–650 700–900

Ultimate Analysis

H (%) 4.1–10.2 0.7–2.8 0.4–1.2 0.2–0.7

C (%) 25.3–51.7 18.9–47 8.2–30.8 6.5–33

N (%) 2–9.8 2.1–6.4 0.4–3.8 0.3–2.9

H/C 2.35–0.35 0.23–0.35 0.05–0.25 0.05–0.30

O/C 0.4–1.18 0.13–0.16 0.05–0.17 0.01–0.18

Proximate Analysis

Ash (%) 23.4–44.6 35–72 60.3–84.0 62.3–82.0

Volatile C (%) 45.9–75.3 18.4–24.1 11.0–16.7 4.6–5.7

Fixed C (%) 1.3–10.5 4.7–12.9 1.9–25.4 23.9–28.4

Macro-nutrients

P (%) 2.0–4.94 5.6 2.4–5.2 4.9–5.1

K (%) 0.3–0.8 0.24 1.4–1.8 0.3

Ca (%) 3.02–10 3.5–4.2 1.3–4.6 5.4

Mg (%) 0.33–2.06 0.4–0.4 0.04–0.5 0.5

S (%) 1.0–5.17 4.5–5 2.7–5 6.2

Micro-nutrients

Fe (%) 2.0–6.83 7.8–8.9 10.2 11

Zn (mg/kg) 470–2398 1250–2980 845–3900 2175

Cu (mg/kg) 370–1400 222–2600 163–2700 1500

pH 4.42–7.39 4.7–9.5 7.2–9 11.7–12

Physical properties

Total surface area (m2/g) 4–35.7 5.5–37.2 9.22–107

Pore volume (cm3/g) 0.0326–0.0738 0.0144–0.0681 0.0321–0.0894

Agrafioti et al. (2013), Ahmad et al. (2014), Bridle and Pritchard (2004), Carey et al. (2015), Cha et al. (2016), Chen et al. (2014),
Hernández et al. (2017), Hossain et al. (2010), Hossain et al. (2011), Hossain et al. (2009), Khan et al. (2013a), Liu et al. (2015), Lu
et al. (2012a), Manara and Zabaniotou (2012), Méndez et al. (2013), Nyakuma et al. (2016), Patel et al. (2019a), Paz-Ferreiro et al.

(2012), Shimabuku et al. (2016), Urych and Smolinski (2016), Xu et al. (2017), Zhang et al. (2014b) and Zielińska et al. (2015)
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in the flue gas generated from the combustion of gas

and oil vapours. The BET surface area analyses

suggested that the highest surface area of 91 m2/g was

obtained for biochar produced at 700 �C which was

reduced to 40.3 m2/g at 900 �C possibly due to

sintering effect.

6.3.2 Effect of vapour residence time

Table 6 shows the effect of vapour residence time on

the product distribution. In fluidised bed reactor,

vapour residence time is more controllable than the

solid residence time in a bench-scale reactors. An

increase in vapour residence time resulted in a higher

biochar yield during the fast pyrolysis of biosolids in a

fluidised bed reactor. For example, Shen and Zheng

(Shen and Zhang 2003) in their study observed char

yield increased from 43 to 69 wt% when vapour

residence time increased from 1.5 to 3.5 s. Similarly,

Fonts et al. (2008a, b, 2009) observed increase in char

yield from 46 to 63 wt% with vapour residence time

increasing from 1 to 3 s. This might be due to the re-

Fig. 4 a BET surface area and b micropore area evolution with time at different temperatures in fixed bed (Lu et al. 1995)

Table 6 Effects of vapour residence time in biosolids’ pyrolysis in fluidised bed experiments

Biosolids

type

Location Temperature

(�C)
Residence

time (s)

Oil yield

(wt%)

Char

yield

(wt%)

Gas

yield

(wt%)

References

Dried

biosolids

After activated

sludge plant

300–600 1.5–3.5 5–32 43–69 12–25 Shen and Zhang (2003)

Dried

biosolids

Unknown 450–700 0.2–0.5 35–52 40–45 7–25 Park et al. (2008)

Dried

biosolids

After anaerobic

digester

450–650 1–3 23–41 46–63 7.4–28 Fonts et al. (2009), Fonts et al.

(2008a) and Fonts et al. (2008b)
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Fig. 3 Effects of pyrolysis temperature and heating rate on

pyrolysis product yields under fast pyrolysis (100 �C/min) and

slow pyrolysis (8 �C/min) conditions in fixed bed (Gao et al.

2014)
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polymerisation and condensation of gas and oil on the

char surface. However, when the vapour residence

time is lower, re-polymerisation will not occur, thus

the biochar yield will be lower. Vapour residence time

can not only alter the pyrolytic biochar yield, but also

may affect biochar quality including surface area and

micro-pore volume. However, there is no study

reported in the literature which provides information

about the effect of vapour residence time on biochar

quality. The effect of vapour residence time on

pyrolysis oil yield is opposite to the char yield. In

pyrolysis, pyrolysis oil yield decreased with the

increasing vapour residence time.

6.4 Comparison between TGA, fixed and fluidised

bed experimental observations

Literature shows highest number biosolids pyrolysis

studies in the order of TGA[ fixed bed[ fluidised

bed (Table 7).

TGA studies mainly used to derive intrinsic kinetic

parameters and reaction mechanisms. As TGA exper-

iments use very small quantity of biosolids sample, it

is very hard to conduct comprehensive physico-

chemical property analysis of the resultant biochar.

Also, TGA coupled with MS or FTIR can be used for

gas analysis. However, such studies on biosolids are

not reported extensively in the literature. TGA study

cannot help estimating char, oil and gas yield as it is

hard to measure the quantity of gas and oil in TGA or

TGA-MS/FTIR experiments. Some TGA studies

looked at the effect of catalysts mainly on the

biosolids’ biochar yield (Patel et al. 2019a; Zhang

et al. 2014b) in conjunction with reaction kinetics.

Fixed bed lab- or bench-scale studies were mainly

focused on understanding the effect of process

parameters such as temperature, heating rate and

solids and vapour residence time on the yield and

morphological changes in the biochar. It is generally

difficult to vary vapour residence time in fixed bed rigs

as they suffer from diffusional barriers and chan-

nelling at lower and higher gas velocities respectively.

Fluidised bed lab- or bench-scale studies were mainly

focused on understanding the effect of temperature

and vapour residence time. In fluidised bed, vapour

residence time is relatively easy to control given the

fact that particles will still be fluidising uniformly at

lower (or minimum) and higher gas velocities and
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hence the chances of diffusional barrier or channelling

are relatively less.

In applied terms, the fluidised bed offers better

performance as mass and heat transfer are greatly

enhanced in the fluidised bed. However, the capital

cost of building fluidised bed may be significantly

higher than the fixed bed. Therefore, there is a need to

quantify the benefits of fluidised bed over a fixed bed.

For biosolids, there is no study reported in the

literature comparing results from TGA, fixed bed

and fluidised bed experiments on a single biosolids

feedstock. Such a study would be able to quantify the

benefits and drawback different methods employed at

research and commercial scale.

7 Applications of biosolids pyrolytic biochar

Biochar can be used for various applications as

highlighted in Fig. 5. The main applications of biochar

reported in the literature are soil amendment, water

and soil remediation, catalysts and energy storage and

generation materials (Wang et al. 2017b; Yuan et al.

2013). Biochar produced from biosolids might have

different properties than biochar produced from

biomass. Therefore, the applications of biosolids

derived biochar may slightly vary. The following

sub-sections have critically reviewed efforts being

made in the open literature.

7.1 Use as soil amendments

Table 8 summarizes studies that focused on agricul-

tural use of biochar derived from biosolids/sewage

sludge. In more than 90% of publications, it is noticed

that biochar increased the yield of a wide variety of

agricultural crops. Hossain et al. (2010) demonstrated

that the yield of cherry tomato could be improved by

64% with the application of biosolids derived biochar

produced at 550 �C. This yield gain is a result of the

Biochar

High 
surface 
area

High 
porosity

High water 
holding 
capacity

High 
surface 
charge

High pH

High 
Nutrient 
exchange 
site

High O containing surface 
func�onal group (-CO; 
OH; -R-OH; –COO-

High EC and 
CEC

High carbon
sequestra�on

CO2
capture

Soil 
amendment

Soil
remedia�on

Energy 
storage

Catalyst

Organic 
contaminant     

removal

Heavy 
metal 

removal

Pollutant
removal

Fig. 5 Potential applications of biochar produced from the pyrolysis of biosolids
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improvement of the soil chemical, physical and

biological properties promoted by the biochar

application.

In most studies, biochar increased the soil phos-

phorus, nitrogen, calcium and magnesium contents. It

is well known that biochar from biosolids is a source of

P, with the potential to replace soluble mineral

fertilizers (Faria et al. 2018). Application of biosolids

biochar to soil can increase P availability by up to 38

times (Yue et al. 2017), thus providing higher crop

yields (Faria et al. 2018). In general, higher pH values

in biochar may be related to increased concentrations

of alkali elements, such as Ca and Mg oxides and their

alkaline reactions (Figueiredo et al. 2018). However,

the effect of biochar on soil pH depends on the applied

dose and pH of the biochar, the initial soil pH and the

soil buffering capacity of both biochar and soil

(Biederman and Harpole 2013). Therefore, biochar

application can also reduce or not affect the soil pH. In

50% of the studies summarized in Table 8, the soil

cation exchange capacity (CEC) was increased by

biochar application. The large specific surface area

and the abundance of functional groups can increase

the CEC of biosolid biochar (Luo et al. 2018).

Therefore, when applied to the soil, biosolids biochar

can improve soil CEC (Faria et al. 2018; Hossain et al.

2010; Lehmann et al. 2006; Sohi et al. 2010).

Biosolids biochar presents great potential to store C

in the form of stable structures over a long period of

time, from centuries to millennia (Zimmerman et al.

2011). This is because pyrolysis, which catalyzes the

transformation of biomass, promotes C retention in the

form of inert carbon (Novotny et al. 2015). Therefore,

in agriculture, biochar can mitigate greenhouse gas

emissions. It has been estimated that global sustain-

able biochar production could offset up to 12% of

current anthropogenic CO2 emissions (Woolf et al.

2010). Recent estimation indicates that the application

of biochar to the soil can promote a C sequestration

rate of 0.54 Mg C ha-1 year-1 (Lal et al. 2018). In the

short term, residual bio-oils and those adsorbed on the

biochar surface, immediately after pyrolysis, serve as

the labile support of C for microbial metabolism

(Steiner et al. 2004). In the long term, the sorption of

biochar with soil organic matter (SOM) may increase

C storage in the soil, providing organic matter with

Table 8 Summary of previous research on the effect of biosolids biochar on soil chemical properties and crop yields

References Pyrolysis

temperature

(�C)

Biochar

rate

Crop pH N P K S Ca Mg CEC Mic Yield

Gondek et al. (2019) 300 1% Grass : : : : :

Yuan et al. (2016) 500 1% : :

Hossain et al. (2010) 550 10 t ha-1 Tomato : : — — : — : :

Faria et al. (2018) 300–500 15 t ha-1 Corn — : — — — : :

Sousa and Figueiredo (2016) 300 3% Radish — : — : : : :

Gwenzi et al. (2016) 300–500 15 t ha-1 Corn — — — — — — — — :

Zong et al. (2018) – 2% - : : :

Khanmohammadi et al. (2017) 350 14,5 t ha-1 Corn — : — : —

Méndez et al. (2012) 500 4% - — —

Fathi Dokht et al. (2017) 350 20 t ha-1 Soybean : : : :

Shao et al. (2019) 800 20 t ha-1 Rice — — — — — :

Tian et al. (2019) 200 5% Grass ; : : : : :

Yue et al. (2017) 500 10% Grass : : : : : :

Khan et al. (2013a) 550 5% Rice : : : — : : :

Luo et al. (2018) 500 5% Alfafa : : : : :

Waqas et al. (2014) 550 5% Cucumber — : : : — :

You et al. (2019) 700–850 40 t ha-1 Peanuts ; : : : :

Mic = micronutrients; :, ; and (—) mean increase, decrease and maintain values, respectively, in relation to the control treatment

without biochar
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physical protection against microbial decomposition

(Zimmerman et al. 2011). Figueiredo et al. (Figueiredo

et al. 2019) demonstrated that the increase of organic

C in the soil promoted by biochar varies with the

pyrolysis temperature employed. While biochar pro-

duced at 300 �C increased the levels of labile and

microbial C that obtained at higher temperature

(500 �C) favored the accumulation of C in more

recalcitrant fractions of the SOM. When combined

with NPK, the application of biosolids biochar can

increase total organic C levels in the soil by up to 40%.

When produced at a lower temperature (300 �C)
biosolids biochar appears to promote a more balanced

between labile and stable fractions of the SOM.

However, long-term studies are needed to evaluate the

actual contribution of biosolids biochar on soil C

accumulation.

One of the major concerns of using biosolids

derived biochar for agriculture land application is the

presence of high levels of heavy metals. Majority of

the heavy metals may remain in the char phase after

pyrolysis (Choudri et al. 2018; Dorrance et al. 2017;

Dumontet et al. 2001; Haynes et al. 2009; Pritchard

et al. 2010; Scher et al. 2018). In fact, the concentra-

tion of heavy metals will increase in the biochar

compared to biosolids (Lee et al. 2017; Paz-Ferreiro

et al. 2018). Levels of some of the heavy metals in

biochar may even cross the limits suggested by

biosolids guidelines for agricultural land application

(Darvodelsky and Bridle 2012); however, they may be

still well below the limits suggested by international

biochar guidelines (Paz-Ferreiro et al. 2018). The

biochar produced from the biosolids is expected to

have higher levels of heavy metals than the biochar

produced from other biomass feedstock (Chen and

Yan 2012). However, bio-availability of most of the

heavy metals from biosolids biochar is suggested to be

very low (Lee et al. 2017; Paz-Ferreiro et al. 2018;

Yang et al. 2018b). Unfortunately, the bio-availability

of heavy metals are not discussed in the biosolids or

biochar guidelines (Darvodelsky and Bridle 2012).

Méndez et al. (2012) reported that compared to direct

agricultural reuse of raw biosolids, the use of biosolids

derived biochar as a soil amendment could lower the

leaching of Cu, Ni, Cd and Zn, as well as reduce the

plant availability of Ni, Zn, Cu and Pb. Waqas et al.

(2014) reported that biochar produced from biosolids

at 550 �C was effective in reducing the polycyclic

aromatic hydrocarbon (PAH) concentrations and the

availability of potentially toxic elements (PTEs) such

as As, Pb and Cu. Song et al. (2014) revealed that

proper pyrolysis temperature choice could prevent the

leaching of heavy metals and inhibit the heavy metals

accumulation in the plants.

7.2 Use as adsorbents

The use of biosolids derived biochar as low-cost

adsorbents can be considered as a reasonably prof-

itable route in biosolids management. The production

of biochar based adsorbents from biosolids via pyrol-

ysis, generally referred to as biosolids-based adsor-

bents, was first proposed by Kemmer et al. (1971). In

the same year, Beeckmans and Ng (Beeckmans and

Ng 1971) prepared biosolids derived biochar based

adsorbent with 14.1% carbon content from the pyrol-

ysis of biosolids. They demonstrated that the adsorb-

ing capacity of such adsorbents was between fly ash

and activated coconut charcoal. After these studies, a

wealth of research on the production and application

of biosolids derived biochar based adsorbents has been

carried out in the subsequent years. The surface area

and functional group were considered as two of the

most important characteristics of the biochar produced

from biosolids for their use as adsorbents. Generally,

the studies indicated that the BET surface area and

porosity of biosolids derived biochar may be affected

by many factors such as residence time, temperature,

heating rate, functional group and inlet particle size

(Agrafioti et al. 2013; Otero et al. 2009; Tang et al.

2013; Zou et al. 2013). Different approaches have

been used in order to obtain biochar with a high

surface area, including (i) physical activation under

the treatment of CO2, air and steam (Jindarom et al.

2007; Méndez et al. 2005; Rio et al. 2006); (ii)

chemical activation with the addition of activation

reagents, such as ZnCl2 (Lu and Lau 1996; Wen et al.

2011; Zhang et al. 2005; Jeyaseelan and Qing 1996),

KOH (Cha et al. 2010), H2SO4 (Lu and Lau 1996;

Martin et al. 2002; Otero et al. 2003; Zhang et al. 2005)

and H3PO4 (Zhang et al. 2005) as shown in Table 9.

The biosolids based adsorbents can be used for

organic contaminant removal, heavy metal removal,

polluted substance removal and nutrient adsorption.

The summary of literature related findings is provided

below, as shown in Table 10.

In recent years, extensive research has been con-

ducted on the use of biosolids derived biochar to
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capture liquid phase organic pollutants (Jindarom et al.

2007; Otero et al. 2003; Rozada et al. 2007). It was

revealed that higher mesopore volume and BET

surface area of biosolids derived biochar are beneficial

for the uptake of pollutants with large molecular sizes,

such as dyes (Jindarom et al. 2007; Otero et al. 2003;

Rozada et al. 2007). There are several studies reported

in the literature about an uptake of anionic and cationic

dyes by biochar produced from biosolids (Jindarom

et al. 2007; Martin et al. 2003, 2002; Otero et al. 2003;

Rio et al. 2006; Zou et al. 2013). It was found that basic

(cationic) dye was adsorbed in greater quantities than

acid dye and/or reactive dye on the biochar produced

by carbonisation with N2 and CO2 activation (Jin-

darom et al. 2007). The high concentration of carboxyl

groups (R-COOH), phenolic groups (R-OH) and

oxygen-containing functional groups on the surface

of biochar are beneficial for the uptake of dyes (Martin

et al. 2002).

Except for the uptake of organic contaminants, the

biochar was also used as adsorbents for the removal of

heavy metals such as Cd2?, Ni2?, Pb2?, Cu2? and

Zn2? in aqueous solutions (Agrafioti et al. 2013; Chen

et al. 2014; Lu et al. 2013; Smith et al. 2009). Biosolids

derived biochar have shown that cation exchange

ability in the negatively charged biochar surface can

efficiently bind to positively charged heavy metal ions

in the solution (Agrafioti et al. 2013; Chen et al. 2014;

Lu et al. 2013; Smith et al. 2009). Rio et al. (2006)

investigated the Cu2? ion uptake by commercial

activated carbon (AC) and activated biosolids biochar

(ABB) carbonised at 800 �C. Approximately 182 mg/

g and 227 mg/g of Cu2? removal was achieved by AC

and ABB, respectively Rio et al. (2006). and Chen

et al. (2014) found that the adsorption of Cu2? and

Cd2? on biochar was mainly through an ion-exchange

mechanism with the Ca2? ions present in the biochar.

Lu et al. (2012a) found that the presence of functional

groups, such as carboxyl group and hydroxyl, were

beneficial for the higher cation exchange capacity of

biosolids derived biochar. Agrafioti et al. (2013)

reported that biochar produced from biosolids

removed * 70% of Cr (III) and * 30% of As

(V) from aqueous solutions. Biosolids’ biochar was

also capable of removing 40% and 65% of Pb (II) and

Cr (VI), respectively, from the aqueous solution

(Zhang et al. 2013). In this case, the presence of

organic functional groups on the biochar surface and

biochar’s higher surface area were found to be

responsible for such high removal efficiency.

Biochar was also found to be a very efficient media

for the removal of some contaminants generated in

pyrolysis and gasification, such as hydrogen sulfide,

sulfur dioxide or nitric oxides. Bashkova et al. (2001)

investigated the adsorption of SO2 on biosolids

derived biochar and found that the capacity of the

adsorbents increases with the increasing temperature

of carbonisation, and the maximum adsorption capac-

ity of SO2 was 30 mg/g. The development of adsor-

bent/catalyst from municipal wastewater sludge for

Table 9 Effects of biochar’s activation methods on surface area

Biosolids type Location Activation

method

Activation

agent

BET surface

area (m2/g)

References

Dried biosolids Unknown Physical CO2 61 Jindarom et al. (2007)

Dried biosolids After aerobic digestion Physical Air 102 Méndez et al. (2005)

After anaerobic digestion 105

Dried biosolids After digestion Physical Steam 96 Rio et al. (2006)

Dried biosolids After dewatering Chemical ZnCl2 309 Lu and Lau (1996)

H2SO4 220

Dried biosolids After dewatering Chemical ZnCl2 509 Wen et al. (2011)

Dried biosolids After activated sludge plant Chemical KOH 783 Cha et al. (2010)

Dried biosolids After anaerobic stabilisation Chemical H2SO4 390 Otero et al. (2003)

Dried biosolids After dewatering via centrifuge Chemical H2SO4 253 Martin et al. (2002)

Dried biosolids Unknown Chemical H3PO4 289 Zhang et al. (2005)

H2SO4 408

ZnCl2 555
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H2S removal was firstly proposed by Lu and Lau

(1996). They prepared activated biosolids derived

biochar (ABB) from dewatered biosolids via chemical

activation by ZnCl2. The BET surface area of ABB

was * 309 m2/g BET and it achieved 1.25 times

higher H2S adsorption when compared with commer-

cial activated carbon. The high BET surface area, high

hydrophilicity and the presence of functional group

and mineral phases are considered to be beneficial for

the adsorption of NH4 (Carey et al. 2015), NOx (Cha

et al. 2010), SO2 (Bashkova et al. 2001), H2S (Lu and

Lau 1996). These features of biosolids’ biochar are

also favourable for the adsorption of other polluting

substances such as triclosan (Tong et al. 2016),

1-naphthol (Liu et al. 2016a), formaldehyde (Wen

et al. 2011) and fluoroquinolone (Yao et al. 2013).

The biochar can also be used for the adsorption of

inorganic N and P. To date, various materials such as

zeolite, opoka, ochre, Polonite, blast furnace slags

and Filtra P, have been suggested for removing P from

wastewater effluent (Cucarella et al. 2008; Dobbie

et al. 2009, 2005; Heal et al. 2005). The biochar

derived from biosolids for capturing P from wastew-

ater can demonstrate environmentally sustainable,

cost-effective and circular economy approach. Shep-

herd et al. (2016) demonstrated phosphate adsorption

by biochar produced from anaerobic digested bioso-

lids but adsorption capacity was found to be extremely

low (i.e. * 1 mg/g) when compared with other

commercially available adsorbent. This might be

attributed to poor physico-chemical properties of the

biosolids derived biochar. However, Li et al. (2019b)

modified biosolids’ derived biochar with dolomite and

demonstrated improved adsorption capacity of

29.18 mg/g. He reported that Ca containing nanopar-

ticles play significant roles in P adsorption via

electrostatic attractions. Saadat et al. (2018) also

reported that the maximum P sorption capacity of Ca-

rich biochar derived from biosolids could be as high as

153.85 mg/g. Yang et al. (2018a) improved the P

adsorption capacity of waste activated sludge-based

biochar through chemical co-precipitation of Fe3?/

Fe2? or FeCl3 impregnation and showed that the

adsorption capacity increased from 15.88 mg/g to

111 mg/g in iron-modified biochars. There is no study

available for N adsorption for biosolids derived

biochar. However, Zhang and Wang (2016) demon-

strated 62.3–79.2% adsorption of N using biochar

derived from co-pyrolysis of Brewers spent grain (Mg

enrich) and Sewage sludge (P enrich).

Biochar is regarded as an efficient and cost-

effective adsorbent. Nevertheless, adsorption only

achieves the transformation of pollutants from aque-

ous solution to adsorbents, but cannot destroy pollu-

tants, so the contaminant-loaded biochar becomes

hazardous waste that must be disposed (Quintanilla

et al. 2010; Tang et al. 2018).

7.3 Use as activation agent

Due to its abundant oxygen-containing functional

groups (OFGs) and persistent free radicals (PFRs),

biochar can effectively catalyze to form reactive

oxygen species (ROS) or sulfate radicals and then

degrade pollutants from aqueous solution. The metal

ions existed in pyrolytic biochar derived from

biosolids can be effective catalyst for activation of

persulfate (PS), hydrogen peroxide (H2O2) and Ozone

(O3). Table 11 provides the summary of Biosolids

derived biochar application for the activation of PS,

H2O2 and O3. Huang et al. (2018) prepared biosolids

biochar based catalyst to activate peroxymonosulfate

(PMS) for Bisphenol-A (BPA) degradation and found

80% degradation in 30 min. Wang et al. (2017a) found

that sludge-derived biochar can effectively activate PS

for the degradation of 4-chlorophenol. The removal

efficiency of 4-chlorophenol reached 92.3% within

100 min. In the presence of biosolids derived biochar,

9.8 mg/L of triclosan could be completely degraded

by PS within 240 min. In comparison, no obvious

degradation of triclosan was observed in the absence

of biochar (Wang and Wang 2019). Luo et al. (2019b)

reported that H2O2 activated by pyrolytic biochar from

biosolids can degrade upto 70.19% ciprofloxacin.

Moreover,[ 80% ciprofloxacin was removed by

synthesis of heterogeneous Fenton-like catalyst using

sewage sludge biochar (Li et al. 2019c). Zhang et al.

(2018) found that 95% of phenol was removed from

aqueous solution via O3 within 30 min in the presence

of biosolids derived biochar synthesized at 700 and

900 �C. The Humic Acid (HA) activation by biosolids

derived biochar has demonstrated * 65% degrada-

tion of ciprofloxacin (CIP) (Luo et al. 2019a). These

studies highlight that besides adsorption, degradation

induced by biochar is also an important pathway in

minimizing the fate of organic pollutants.
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7.4 Advance applications as catalysts and energy

storage and energy generation materials

The literature on the use of the biosolids derived

pyrolytic biochar as catalyst or catalyst support is

scarce when compared to their use as an adsorbent. Liu

et al. (2017, 2016b) investigated biosolids derived

pyrolytic biochar as a catalyst and found that metal

content (i.e., Ca and Fe) present in the biochar might

be responsible in decreasing bio-oil yield and increas-

ing py-gas yield as shown in Fig. 6. The use of biochar

in a microbial fuel cell (MFC) as a catalyst is studied

by Yuan et al. (2013). They built a catalytic layer air

cathode coated with biosolids’ biochar. The cathode

power density of the biosolids’ biochar catalyst layer

was comparable with Pt/C-layer of the cathode,

reached 500 ± 17 mW/m2. Wang et al. (2017b)

demonstrated the use of Ni loaded biosolids derived

biochar as an electrode for supercapacitors and found

that loss in capacitance was less than 2% after 1000

charge–discharge cycles.

A number of lignocellulosic precursors, such as

coconut shell (Jin et al. 2013; Kim et al. 2004;

Muradov et al. 2005; Prasad et al. 2010), palm

shell (Abbas and Daud 2010) and olive stones (Mah-

moudi et al. 2017) and hardwood (Bai et al. 2005;

Prasad et al. 2010) were used as raw materials for the

production of biochar or activated char which later

applied in catalytic methane decomposition as shown

in Table 12. The work on the use of biochar and

activated char produced from biosolids for catalytic

methane decomposition was first demonstrated byT
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Patel et al. (2020). He observed that biosolids’ biochar

and activated char performed slightly better than

biomass biochar and activated char. He concluded that

better conversion rates with biosolid’s biochar and

activated char might be attributed to catalytic activity

enhanced by heavy metals present in them.

Biochar use in advance applications as mentioned

above can generate higher revenue and expected to

improve the commercial viability of the biosolids to

biochar route. However, more scientific and demon-

stration work is needed in this area to prove that these

applications are techno-commercially feasible.

8 Process modelling, techno-economic assessment

and large scale demonstrations

Process modelling of pyrolysis using ASPEN Plus or

Hysys is a challenging task due to varied solid’s

feedstock, complicated primary and secondary reac-

tions involved in the pyrolysis process and complex

pyrolysis-oil composition comprising more than 100

compounds. There are very limited number of process

modelling related studies published so far for the slow

pyrolysis of biosolids. McNamara et al. (2016)

developed a simple energy balance code and con-

cluded that pyrolysis of dried biosolids can be energy

positive and the energy required for pyrolysis of dried

feedstock can be five times lesser than the energy

required for drying biosolids Patel et al. (2019c).

developed ASPEN Plus process model and performed

detailed energy balance to study the feasibility of the

production of biochar from biosolids. The modelling

suggested that moisture content lower than 50 wt.% in

biosolids can make pyrolysis process energy neutral.

The article published in 2008 focused on the

preliminary techno-economic analysis to produce

pyrolysis-oil from primary (collected from the pri-

mary settling tank), thickened waste activated sludge

(TWAS) and digested biosolids (collected as cake

after anaerobic digestion and dewatering). The results

concluded that primary sludge pyrolysed at 500 �C
produced the greatest economic benefit (i.e., 9.9

Canadian ¢/kg-dry solids) (Kim and Parker 2008).

Patel et al. (2019c) performed a techno-economic

assessment of the slow pyrolysis of 6 tonnes/day

biosolids with an aim to produce biochar. The Net

Present Value (NPV) calculations suggested that

biosolids management cost and biochar sale price

were the most critical factors in establishing commer-

cial viability.

There are significant moves afoot with demonstra-

tion/commercial-scale process development of bioso-

lids pyrolysis. The summary of the key demonstrations

is provided below.

8.1 EnerSludge (Bridle et al. 2000; Bridle

and Pritchard 2004; Bridle and Skrypski-

Mantele 2004)

The EnerSludge process developed by Environmental

Solutions International Ltd (Australia) utilized tem-

peratures near 450 �C, used catalysts and focused on

the production of oil. The process has also been

referred to as the oil-from-sludge process. The Ener-

sludge process was first demonstrated in Subiaco

wastewater treatment plant, Perth, Australia. Dewa-

tered undigested sludge between 26 and 28% solids

was first fed into a dryer, which produced pellets at

95% solids that were later fed into the reactor. The

EnerSludge system had two pyrolysis reactors zones

(i) volatilisation Zone, and (ii) reaction zone. In the

first zone, approximately 50% of the sludge was

vapourised. The oil and char from the first reactor were

directed to a second reactor. In the second reactor,

catalysts (alumina silicates and heavy metals) were

used to convert the generated oil vapours into short

chain hydrocarbons. These vapours were condensed in

a second reactor and then an oil/water separator was

used to refine the product. The oil product was further

refined in a hydro-cyclone to diesel fuel. The energy

requirements for the EnerSludge process were satis-

fied by burning char, non-condensed gas and reaction

by-products in Hot Gas Generator (HGG). The Perth’s

EnerSludge facility was operated from September

2000 to December 2001 and then stopped when a more

cost-effective lime conditioning process was installed.

8.2 BioForceTech (Bioforcetech 2019b)

The BioForceTech (USA) plant is composed of

multiple biodryer units coupled with a pyrolysis

reactor. Pyrolysis process, which is a screw type

reactor operates between 350 and 600 �C. The

biodryer coupling with pyrolyser allow high mass

reduction rate; * 78 kg of char is obtained from one

ton of initial biosolids (20% solid content). If the

biosolids’ moisture content is equal or higher than
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20%, no external fossil fuel is needed for the drying

process because the oil and gas vapours produced

during pyrolysis are combusted and used to generate

heat, which is used in the drying process. The first

plant is currently under operation at Redwood City,

CA, USA since 2017.

8.3 Anaergia (Josse et al. 2016)

The Anaergia pyrolysis process is developed by

Anaergia Inc. (USA). The process is performed in a

screw type reactor. The operating temperature is found

to be in the range of 300–550 �C and the focus is on

the production of biochar. The processes can handle

500 kg/h of dried biosolids pellets. A pyrolysis liquid

and gas are used in an anaerobic digester to enhance

biogas production. It can handle biosolids with\ 45%

moisture. The first plant is currently under operation at

Carlsbad, CA, USA since 2013.

9 Conclusions, current challenges, research gaps

and future perspectives

The biochar production from biosolids has been

extensively reported in the literature. By and large,

the literature has concluded that biosolids to biochar

via pyrolysis can be an effective option for biosolids

management. It helps reducing biosolids volume as

well as add value to them by converting them into

high-quality biochar. It is also established that biochar

produced from biosolids, can have applications as soil

amendment materials, adsorbent and catalysts due to

its excellent physico-chemical properties. Despite this

fact, the commercial viability of the existing pyrolysis

process for converting biosolids to biochar is still very

limited in the current scenario. The major research

gaps and challenges that need to be addressed for this

route to be commercially viable are highlighted below

with some recommendations.

9.1 Requirement of biosolids drying

The biosolids obtained at different treatment levels in

wastewater treatment plants can have a moisture

content of 75–80 wt%. Therefore, they require drying

prior to their introduction in the pyrolysis process. The

moisture can have a significant impact on the pyrolysis

process efficiency and performance. For example, wet

biosolids are difficult to grind or sieve. Moreover, wet

biosolids, if used in pyrolysis processes without

drying, can agglomerate or sinter the reactor bed. It

can also increase exergy losses of the system as

moisture will take a significant amount of heat away

from the system without it being fully recovered.

Drying of biosolids with such high moisture content

can be highly energy-intensive as well. Newer designs

of slow pyrolysis process have introduced an integra-

tion step where oil and gas vapours can be combusted

in combustor while keeping biochar as the main

product. The energy generated from the combustor can

be used for the energy required for drying as well as

pyrolysis. It has been reported by Patel et al. (2019c)

that greater than 50 wt.% moisture in biosolids would

require external energy even for such integrated

pyrolysis process. Therefore, solar, air convection or

bio-additive based drying methods should also be

researched in future for biosolids drying, which can

make the process self-sustainable without the require-

ment of any external fossil or renewable fuels

including biogas.

9.2 Transport of biosolids and requirement

of mobile pyrolysis processes

Wider distribution of wastewater treatment plants is

one of the major bottlenecks of biosolids management

or even for its conversion to biochar via pyrolysis.

High moisture content in biosolids and their decen-

tralised production may incur a significant transport

costs and associated emissions if they are required to

be sent to a centralised waste to resource facility such

as pyrolysis. Therefore, a decentralised small scale

pyrolysis systems would be more preferable as it can

avoid transport of biosolids. However, majority of the

existing pyrolysis processes become commercially

viable only at medium to large scale. Therefore, future

efforts should be made in designing a novel but simple

and cost-effective small scale mobile pyrolysis units

so that biosolids transport can be avoided.

9.3 Secondary emissions/risks from biosolids

pyrolysis

Biosolids pyrolysis can generate emissions of SOx,

NOx, mercury, polyaromatic hydrocarbons (PAHs)

dioxins and furan. It has been found that NOx

emissions with biosolids pyrolysis is found to be
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relatively lower when compared with biomass. This is

due to the fact that organic nitrogen in biosolids may

generate ammonia at medium-higher pyrolysis tem-

perature, which can act as a NOx reducing agent

during the combustion of oil and gas vapours (Jensen

et al. 1995; Patel et al. 2019b). It has also been

suggested that fluidised bed reactors reduced the PAHs

formation due to the effective heat and mass transfer

(Rollinson 2016). However, dedicated studies on

secondary emissions/risks are still limited in the

current literature, and therefore, future research should

target on the comprehensive long-term measurement

and reduction of the secondary emissions generated

from the biosolids pyrolysis process.

9.4 PFAS, micro-plastics and pharmaceuticals

destruction in biosolids pyrolysis

Pyrolysis is a thermal process. The temperature (i.e.,

400–700 �C) at which the pyrolysis operates is

expected to completely destroy pathogens, pharma-

ceuticals, pesticides andmicro-plastics from biosolids.

It is also hypothesized that PFASs from biosolids at

this temperature will be vaporised and destructed

partially/completely in the subsequent combustor

where gas and oil vapours are combusted (Bio-

forcetech 2019a; GHD 2019; Surti 2019). There is a

possibility that, if PFASs not fully destroyed, at least

long-chain PFASs might be converted into shorter

chains. However, no scientific studies on biosolids are

published yet demonstrating this. Also, the fate of

fluorine post-pyrolysis is not fully understood with

biosolids being the feedstock.More research should be

carried in the future demonstrating the ability of

pyrolysis to destruct some of the key emerging

contaminants from biosolids and reduce the secondary

risk from them polluting air, water and land.

9.5 Nutrient recovery from biosolids pyrolysis

Biosolids derived biochar is expected to keep nutrients

into their matrix and act as a slow release fertiliser

when applied to the soil. However, the literature

suggests that some macro and micro-nutrients from

biosolids will partly release (i.e., 30–50%) into the gas

phase during pyrolysis and might be obtained in the

aqueous stream during the scrubbing of flue gas

(Hossain et al. 2011; Zielińska et al. 2015). The

research on aqueous stream and its potential to be used

as a source of the nutrient is not reported in the

literature. In the future, more efforts should be made to

evaluate the potential of nutrient recovery from the

aqueous stream of the integrated pyrolysis-combus-

tion process.

9.6 Effect of biosolids derived biochar on soil

biota

It has been established in the literature that microbial

biomass increases as a result of biomass derived

biochar additions. This is due to significant changes in

microbial community composition and enzyme activ-

ities that may explain the biogeochemical effects of

biochar addition on element cycles, plant pathogens

and crop growth (Zhang et al. 2014a). However,

similar studies on the biosolids derived biochar are

currently lacking in the literature and therefore, should

be encouraged in the future.

9.7 Lack of policy framework and guidelines

for biosolids derived biochar

The consistency in policy framework and guidelines

for both biochar production and use lacks at state,

national and regulatory body levels. The biochar

market is also not regulated currently neither by price

nor by quality/standards. Same applies to biosolids

derived biochar. More collaborative research in the

future should be encouraged at state, national and

regulatory levels to ensure consistency in policy

framework and guidelines for both biochar production

and use.

9.8 Benchmarking of biosolids derived biochar

with biomass derived biochar

The biomass derived biochar can be significantly

different from biosolids derived biochar. This is due to

the fact that biomass and biosolids are quite different

in their physico-chemical properties. For example, the

biosolids have higher ash content compared to

biomass. The biosolids, unlike biomass, may have

polymers present in them, which are used as sludge

thickening agents during wastewater treatment. Dif-

ferent structures and composition of biosolids make

them distinctively different feedstock for pyrolysis.

For example, Patel et al. (2019b), in their recent study,

identified that pyrolysis of biosolids required higher
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temperature (i.e., 700 �C) compared to biomass

pyrolysis (i.e., 500 �C) to produce high surface area

biochar. More detailed comparison/benchmarking of

biomass and biosolids derived biochar should be

carried out in the future to explore the potential use of

biosolids in the pyrolyser designed for biomass and

co-pyrolysis.

9.9 Increased concentration of heavy metals

in biosolids derived biochar

Biosolids generally have higher heavy metal content,

which are expected to further increase in the resultant

biochar after pyrolysis. However, it has been found in

the literature that heavy metal content in biosolids

derived biochar are immobilised, remain bio-unavail-

able and their values are still under the regulatory

limits proposed by international biochar guidelines

(Paz-Ferreiro et al. 2018; Yang et al. 2018b). How-

ever, it is not clear for how long the heavy metals will

remain immobilised in the biochar. More research

should be conducted to answer this question. Also, co-

pyrolysis of biomass (and biosolids) should be

considered in the future to reduce heavy metal

concentration in the resultant biochar. If bio-avail-

ability still remains as a major concern for biosolids’

biochar for land applications then, in future, more

efforts should be made to develop non-agriculture

applications such as their use as adsorbents, catalysts

and energy storage and generation materials. Partic-

ularly, biosolids’ biochar role in catalytic methane

decomposition can be more attractive as metals can be

seen highly favourable in catalysing the reaction.

9.10 Lack of pilot scale demonstrations and life

cycle assessments

Despite extensive publications in this area, so far,

there are only three successful pilot-scale demonstra-

tions of biosolids pyrolysis reported in the literature.

More such demonstrations should be supported in the

future. Also, the majority of the experiments reported

in the literature are batch or semi-continuous type.

Continuous flow experiments are essential in under-

standing the process performance and efficiency

before going to large scale pilot-scale demonstration.

It has been established that compared to other

biosolids management options, pyrolysis achieves a

significant reduction in the life cycle emissions

(i.e.,[ 25%) (Miller-Robbie et al. 2015; Peters and

Rowley 2009). However, more life cycle assessment

studies including different scenarios such as mobile

(decentralised) versus centralised pyrolysis unit, urban

versus regional wastewater treatment plant, dried

versus wet biosolids, biochar’s use as soil amendment

versus adsorbent/catalyst should be studied in the

future to realise the potential of biosolids pyrolysis

over the entire life cycle.
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