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ARTICLE INFO ABSTRACT

Keywords: Modeling wastewater processes supports tasks such as process prediction, soft sensing, data analysis and
Deep learning computer assisted design of wastewater systems. Wastewater treatment processes are large, complex processes,
Review with multiple controlling mechanisms, a high degree of disturbance variability and non-linear (generally
Wastewater

stable) behavior with multiple internal recycle loops. Semi-mechanistic biochemical models currently dominate
research and application, with data-driven deep learning models emerging as an alternative and supplementary
approach. But these modeling approaches have grown in separate communities of research and practice, and
so there is limited appreciation of the strengths, weaknesses, contrasts and similarities between the methods.
This review addresses that gap by providing a detailed guide to deep learning methods and their application
to wastewater process modeling. The review is aimed at wastewater modeling experts who are familiar with
established mechanistic modeling approach, and are curious about the opportunities and challenges afforded
by deep learning methods. We conclude with a discussion and needs analysis on the value of different ways
of modeling wastewater processes and open research problems.

Artificial Intelligence
Machine learning
Mechanistic modeling

1. Introduction

Modern wastewater treatment plants represent one of the great-
est public health advances of the last century (Naik and Stenstrom,
2012). They have a substantial role in preserving ecosystems and
safeguarding human health by removing pathogens, contaminants and
nutrients prior to environmental discharge. Modern treatment facilities
comprise multiple unit operations, relying on many physical, biologi-
cal, and chemical mechanisms and are subject to substantial external
dynamic disturbances, strong non-linearities, widely varying system
time constants for different processes, and treatment targets (Burton
et al., 2013). Treatment facilities are capital-intensive civil infrastruc-
ture that is non-flexible in purpose, highly exposed to localized climatic
changes, with costs that are strongly dependent on the selection of
effective processes and unit operations (Pinheiro et al., 2018). There
is a strong focus in research and practice on machine assisted asset
design and optimization (Yuan et al., 2019b). Furthermore, wastewater
treatment processes are data rich, have strong research support, and
generally an excellent history of transfer from research to engineering
practice (Corominas et al., 2018b).

Wastewater treatment processes are large, complex processes, with
multiple controlling mechanisms, a high degree of disturbance vari-
ability and non-linear, generally stable behavior with multiple internal
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recycle loops. Hence, machine-based analysis has focused on dynamic
analysis, particularly plant-wide analysis rather than unit analysis with
the ambition to expand upstream (sewer and catchment), and down-
stream (receiving environment). Dynamic process analysis will be the
focus of this review. Use of semi-mechanistic biochemical models such
as the Activated Sludge Model series (ASM) (Henze et al., 2000),
and Anaerobic Digestion Model 1 (ADM1) (Batstone et al., 2002) and
related commercial models, particularly in design and control system
analysis is ubiquitous. However, these models focus on biochemical and
chemical conversion only, with the hydraulics generally being mixed
tanks in series, with some extensions for plug-flow and biofilm systems.
Models for units dominated by physical and chemical processes are
commonly empirical (Jeppsson et al.,, 2013), due to the complex-
ity of underlying phenomena i.e., non-ideal separation and reaction.
This is being challenged, with the semi-empirical Takacs secondary
clarifier model being an outstanding example (Takacs and Nolasco,
1991). Multi-phase and aquatic chemistry is being increasingly repre-
sented on a fundamental level, including the incorporation of advanced
non-ideality (Batstone et al., 2012). However, this is resulting in an
extremely high level of model complexity, substantial solver issues
involving multi-unit non-linear, stiff differential-algebraic systems, of-
ten involving hundreds of state variables (Flores-Alsina et al., 2015).
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Nomenclature

ADM Anaerobic Digestion Model
AETL Auto-encoder Transfer Learning
AE Auto-encoder

Al Artificial Intelligence

ANN Artificial Neural Network
ARIMA Auto-regressive Integrated Moving Average
ASM Activated Sludge Model

AS Activated Sludge

Bi Bidirectional

BM Boltzmann Machine

BOD Biochemical Oxygen Demand
BSM1 Benchmark Simulation Model 1
BSM2 Benchmark Simulation Model 2
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
COD Chemical Oxygen Demand
CUSUM Shewhart Cumulative Sum

DAE Differential Algebraic Equation
DBN Deep Belief Network

DL Deep Learning

DO Dissolved Oxygen

DRL Deep Reinforcement Learning
D Dimension

EWMA Exponentially Weighted Moving Average
FFNN Feed Forward Neural Network
GAN Generative Adversarial Network
GDBN Growing Deep Belief Network
GHG Greenhouse Gas

GPU Graphical Processing Unit
GRNN Gated Recurrent Neural Network
GRU Gated Recurrent Unit

I/0 Input/Output

IWA International Water Association
LSTM Long Short Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MLP Multi-Layer Perceptron

MLSS Mixed Liquor Suspended Solids
ML Machine Learning

MPC Model Predictive Control

N,0 Nitrous Oxide

NH,-N Ammonium

NN Neural Network

NOs;-N Nitrate

ODE Ordinary Differential Equation
PCA Principal Component Analysis
PI Proportional Integral

PLS Principal Least Square

PO, Phosphate

R? Coefficient of Determination
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit

ResNet Residual Neural Network

The biochemical and chemical focus of mechanistic modeling in the
wastewater sector means that they are generally excellent when sim-
ulating processes dominated by these mechanisms, but weaker when

RL Reinforcement Learning

RMSE Root Mean Square Error

RNN Recurrent Neural Network
SDAE Stacked Denoising Auto-encoder
SHAP SHapley Additive exPlanation
SMOTE Synthetic Minority Over-Sampling Technique
SPC Statistical Process Control

SSM State Space Model

SS Suspended Solids

SVM Support Vector Machine

TL Transfer Learning

N Total Nitrogen

TP Total Phosphorous

TSS Total Suspended Solids

VAE Variational Auto-encoder
WWTP Wastewater Treatment Plant

other phenomena (e.g., hydraulics) dominate (Samstag et al., 2016).
Fundamentally, there are behaviors in wastewater treatment systems
that cannot be represented with reasonable computational resources
using mechanistic models. This issue expands greatly if the scope of
the model expands upstream (to the catchment), or downstream (to
the receiving environment) (Jeppsson et al., 2013). Indeed, parameter
and system analysis often use simplified models (Ocampo-Martinez,
2010; Olsson et al., 2005) that allow the several thousand repeated
simulations required.

Mechanistic models are also challenged by the rapid emergence of
new processes focusing on efficiency and resource recovery utilizing
different fundamental biochemistry such as phototrophic (algae and
purple bacteria), chemotrophic, and chemical processes. While mod-
eling is used to analyze these processes (Puyol et al.,, 2017; Wégner
et al., 2016), selection of an appropriate model requires domain ex-
pertise, and is a balance of model and operator capability, complexity,
suitability to the application, model maturity, identifiability, and data
availability. This is beyond the scope of the paper, and is discussed
further in Rieger et al. (2012).

Data-driven models, in contrast to mechanistic models, seldom as-
sume structural knowledge of the underlying physical process of a
system. These models search for empirical relationships between pro-
cess state variables (Solomatine and Ostfeld, 2008) and have been
widely used in the wastewater industry for predictive control, fault de-
tection, variable prediction, and process management (Newhart et al.,
2019). The basis of these models are data relationships rather than
underlying knowledge of the process. These form a broad range of
models including regressive (Alwan, 1992), linear state-space models
(SSM) (Durbin and Koopman, 2012), dimensional reduction (or simpli-
fication techniques) such as principal component analysis (PCA) (Rosén
and Lennox, 2001), and most recently, machine learning (ML) and deep
learning (DL) (Dargan et al., 2020).

Classic empirical models are normally effective at representation
and analysis of data, but fairly poor at prediction (including model
based control), particularly where the prediction domain lies outside
the training domain, or where the 1I/0 relationships are non-linear (in-
cluding most wastewater processes) (Puyol et al., 2017; Wagner et al.,
2016). ML models have similar prediction difficulties when expanding
beyond their training domain, however emerging ML techniques offer
the potential for better prediction capabilities, and effective represen-
tation of non-linear relationships (Corominas et al., 2018a). ML offers
a remedy to tackle a range of problems that do not assume prior
knowledge including statistical stationarity, and linearity. Instead, it
directly explores the input features to learn a non-parametric model
that can theoretically express any linear or non-linear process (Meir,
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2000). ML is a subset of Artificial Intelligence (AI) that builds mathe-
matical models from features without being explicitly programmed and
addresses the broader problem of programming computers to perform
tasks that normally require human intelligence. The field of machine
learning is complex and somewhat inaccessible to non-(ML)-experts.

Previous reviews of data-driven models for wastewater processes
considered the translation from development to practice (Corominas
et al., 2018a) and the use of data-driven models in general focusing
on linear I/O (Newhart et al., 2019; Corominas et al., 2018a). Recent
reviews of deep learning consider the application of DL to: urban water
supply and sewage infrastructure (Fu et al., 2022) and Al applied to
drinking water process systems (Alam et al., 2022) and membrane
based treatment systems (Jawad et al.,, 2021). This review of deep
learning focuses on a different application area: wastewater treatment
design, optimization, and control, where as discussed above, the default
approach is mechanistic modeling. This review surveys applications
of deep learning for wastewater process modeling, and offers insights
into how deep learning complements existing approaches, and where
and how deep learning offers new opportunities for modeling complex
wastewater processes including hybrid approaches that combine both
methods.

2. Comparison of modeling approaches
2.1. Mechanistic models

What is mechanistic modeling? Mechanistic process modeling utilizes
prior knowledge of the system to build a mathematical representation
of the system. It imposes basic dynamic mass balances in multi-
ple units, generally with a dilute assumption (water as non-reactive
carrier), and the majority of units represented as single, or mul-
tiple 0-D completely mixed reactors, though 1-D models with ad-
vection/diffusion/sedimentation may be included where appropriate
(e.g., biofilms, sedimentation basins, contact basins). The principles of
0-D conservation models are highly developed, and for each state vari-
able, consist of accumulation, advection, diffusion (if in contact with
a mass transfer boundary), and source terms (Hangos and Cameron,
2001). The general mass balance equation is applicable across a wide
range of industries and physics problems.

Models are focused on biochemistry. Since the conservation equation is
based on well established principles, the majority of the intellectual
effort specific to wastewater is development of the source (reaction)
terms. This has focused on biochemical conversion processes, with non-
chemical reactions generally prioritized to a lesser extent and focused
on specific issues such as liquid—gas transfer. A broader inorganic
chemistry framework is now being established (Batstone et al., 2012).
Standardized mechanistic models such as the ASM series (Henze et al.,
2000) and ADM1 (Batstone et al., 2002) focused on the presentation
of a biochemical conversion framework involving multiple functional
groups to represent key units effectively. These models have been
modified and implemented in various forms in commercial software
and are highly mature. Over the last 20 years, a key focus has been
the expansion and synthesis of unit models and inclusion of ancillary
models to a plant wide mechanistic framework, assisted by initiatives
such as the Benchmark Simulation Model 2 (BSM2) (Jeppsson et al.,
2007).

The resulting non-linear differential equations are numerically
solved to emulate the non-linear behavior of wastewater treatment
plants (WWTPs). In many cases, implicit algebraic equations are also
present, requiring a differential-algebraic equation (DAE) solution
approach (Solon et al.,, 2017). The complexity of the biochemical
models and the process itself can mean that a plant wide model
consists of thousands of differential equations, and model reduction
is common for specific tasks. However, improved computing power
and targeted solver approaches means that computing power is no
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longer a critical barrier for mechanistic process modeling. As mech-
anistic models are conservation based and represent the underlying
mechanisms (though they use a simplified, semi-empirical approach
to individual processes such as biochemical conversion), they have
excellent predictive capabilities when the dominant mechanisms are
included.

Issues with mechanistic models. The main barrier, particularly when
modeling these complex systems, is the requirement of a high degree
of application specific information (e.g., wastewater characterization,
parameter identification, input and disturbance acquisition) and ex-
pert domain knowledge (Ocampo-Martinez, 2010; Olsson et al., 2005).
There is an intrinsic barrier to emergent processes which utilize a fun-
damentally different biology (e.g., photosynthetic, fermentative, etc.),
as they do not benefit from 50 years of specific model development.
Finally, mechanistic models are limited to the mechanisms which have
been included in the underlying model and parameterize elements
which may be time dependent (e.g., biochemical parameters) either due
to matrix effects (e.g., temperature, inhibitors, nature of the substrate),
or unknown mechanisms. The application of data-driven models is
motivated where the system is too large, too different, or too noisy to
be effectively represented by a mechanistic approach.

2.2. Empirical models

Empirical models are data-driven models that establish a relation-
ship between inputs and outputs without an expert-provided specifica-
tion of the system behavior. Domain expertise is not required to apply
empirical models, but achieving a useful outcome generally requires
expertise to identify applications or erroneous outcomes. All data-
driven models are types of machine learning, since they represent a
system using generalizable rules, without expert domain knowledge of
the system. Data-driven models can be parametric (i.e., the relationship
between inputs and outputs is numerically associated by parameters),
or non-parametric (i.e., the relationship is associated mainly through
model structure). The ubiquitous deployment of cost-effective sensors
has generated large volumes of WWTP data. However, extracting useful
information from this data is still a challenge. Traditional approaches
used to transform and enrich data, rely on manual interpretation which
is impractical for vast data sets (Fayyad et al., 1996). While not I/0
empirical models, large data processing techniques such as Statistical
Process Control (SPC) charts, i.e. Shewhart, cumulative sum (CUSUM),
and exponentially weighted moving average (EWMA) charts (Venkata-
subramanian et al., 2003; Gustafsson, 2007) have been applied to these
data processing problems. Unfortunately, these methods do not yield a
reasonable degree of confidence, due to the inherent non-linearities of
WWTPs.

Linear and simple non-linear empirical models. Classical empirical mod-
eling represents the relationship between inputs and outputs in time
space or state space, generally using simple linear relationships. Time
space models are discrete, while state space models may be continuous
or discrete in time. In general, simple ML techniques assume that the
time series is stationary which is often not the case for many real-world
time series (Le Guen and Thome, 2019).

Time-space models. The simplest time-space models are: regression
models: outputs are a linear or simple non-linear function of current
inputs; regressive or moving average (MA) regression: outputs are a
function of inputs and past inputs (McKenzie, 1984); or auto-regressive
moving average (ARMA): outputs are a function of inputs and past
inputs and outputs (Alwan, 1992). The function may be linear or non-
linear in parameters e.g., where an ARIMA (Reagan, 1984) model is
used, but the majority of wastewater applications use ARMA models,
and are hence linear in parameters. Statistical analysis and optimized
approaches to linear (in parameters) and non-linear problems is pro-
vided by the Box—Jenkins methodology (Box et al., 1974). PCA (Rosén
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and Lennox, 2001) is commonly used for dimensional reduction in
correlated inputs, or principal least squares (PLS) as a way to co-analyze
relationships between multiple inputs and outputs. PCA for input
reduction is particularly useful, since many concentration inputs are
highly correlated in wastewater systems and will be co-represented in
a single major principal component. Time dependence is represented by
the moving average and auto-regressive elements and any non-linearity
in time is represented (generally inadequately) by the parameters
in the moving average function i.e., an exponential decay kinetic is
represented by 2-3 parameters. Finally, they are also highly exposed
to mismatches between model discrete frequency and the fundamental
system time constants.

State space models. State space models (Durbin and Koopman, 2012)
address many of the issues of time-space models by representing the
system as a set of linear ODEs in inputs and outputs. The system states
are generally mapped to outputs using translation functions. This means
that they can provide excellent representation of a simple, linear time-
dependent system, and have enhanced predictive capability. However,
wastewater processes are generally non-linear (biochemical equations
have an order between 0 and 1), and are non-stationary over longer
periods due to multiple processes with different time constants. Due
to these issues, state space models have reasonable predictive power
only in the short term, and do not extract fundamental longer-term
system characteristics since variance is generally dominated by short
term behavior.

Issues with empirical models. Due to the high number of potential in-
puts, and level of correlation between these inputs, feature engineering
is required to prepare data for building empirical models. In a process
context, feature engineering involves the selection and pre-processing
of inputs to identify the minimal and most important inputs. This may
involve numerical reduction (e.g., via PCA), or numerical selection
(by forward or backwards feature selection). Feature selection requires
domain expertise and is a time intensive process, as it is often difficult
to describe features that appear obvious to humans.

However, feature engineering governs the performance of empiri-
cal models (Bengio et al., 2013). Consequently, the design of a pre-
processing pipeline for training an empirical model is the critical path
to implementation of a successful model.

2.3. Deep learning models

What is deep learning? Deep learning is a technique for creating a
model of a complex non-linear system by learning from examples of the
system’s inputs and outputs. It extracts essential features or representa-
tions directly from the raw input data by organizing its computational
processing units, called artificial neurons, into a hierarchy of layers.
This organization as layers provides the notion of the computational
‘depth’ of the network, inspiring the name ‘deep learning’. Once trained
for a particular task with measured data, a deep learning model can be
used for generating outputs for the same task from previously unseen
input data.

How does DL work? DL is a technique based on Artificial Neural
Networks (ANNs), which are loosely inspired by biological processing
units of a human brain (Goodfellow et al., 2016). The simplest process-
ing unit of these algorithms is called a neuron or perceptron. Fig. 1
illustrates the basic operation of a single neuron/perceptron. When
these units are arranged in layers in a hierarchical manner they form
a deep neural network, where deep refers to the number of layers. The
layers are connected by activation functions, which essentially switch
connections on or off by continuous and discontinuous functions. The
weights of the connections between the neurons determine the model
response. Training a deep learning network involves adjusting weights
across a range of inputs and outputs in order to optimize the neuron
weights so as to maximize the accuracy of outputs predicted by the DL
model for given inputs as shown in Fig. 2.
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Fig. 1. Illustration of an artificial neuron or perceptron in a standard ANN. A weighted
sum is computed via linear combination of inputs features by weights of parameters
alongside a scalar bias term. Afterwards, the output is computed by application of
non-linear function called an ‘activation function’ (e.g., rectified linear unit (ReLU)) to
the weighted sum.

Unlike mechanistic models, where the function of the model is
largely defined by the specific state equations, the function of a neural
network is defined by its architecture i.e., the specific arrangement of
neurons and activation functions. A detailed review of architectures rel-
evant to wastewater processes is provided in this section. A wide range
of architectures are available, and these are summarized graphically
in Fu et al. (2022) and Van Veen and Leijnen (2016) The Neural Net-
work GNN' for reference. Design choices for DL architectures include
the type and number of neurons, activation function type, number of
layers, and specific inter-connections between neurons. The Multi-Layer
Perceptron (MLP) (also called feed forward, or deep feed forward) is a
feed forward model where each neuron in each layer is connected to all
neurons in the following layer and vice versa. The input layer connects
to the inputs while the output layer is the final layer which produces
the output. In addition to these layers, a network may contain a range
of internal layers called hidden layers (hidden neurons).

The feed forward model translates input to output data in a forward
direction through activation functions and weights. As noted above,
while the structure of the neural network largely defines its function, a
number of specific neuron types may be used for specific applications.
For a basic neural network, inter-layer connection is dense, that is all
neurons in a given layer are connected to all neurons in a previous
layer by activation functions and weights, but an architecture can
be specifically built to be sparse, or specific hidden layer neurons
(e.g., convolution or deconvolution) may inherently utilize 2:1 or 1:2
interlayer mapping. Input neurons generally consist of processed in-
put features. The back-fed variation receives information back from
a hidden layer or another input cell and is used in Restricted Boltz-
mann Machines and Deep Belief Networks. Random noise may also be
included in input cells, often to train the network to avoid this noise.

Hidden neurons contain the internal system states, computed from
inputs and other hidden layers, and are mapped to outputs via activa-
tion functions. In recurrent neurons, information from a hidden layer is
fed back to that layer as input information. These are used in recurrent
neural networks (RNN). Previous time states may be stored (memory
recurrent neuron), forming long, short term memory (LSTM) networks
and this information may be filtered (gated) in gated recurrent neural
networks (GRNN). Hidden layer information may be inter-layer, for-
ward, or backward (bidirectional RNNs). Convolutional neurons apply
a convolution operation to reduce dimensionality. Deconvolution may
be applied to increase dimensionality (generally considering time series
data). Output neurons generate the desired output from a number of

1 https://www.asimovinstitute.org/neural-network-GNN
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Fig. 2. Illustration of a training loop in a deep neural network. Initially, the model parameters (weights) are initialized to random values. Then the weights are adjusted iteratively
over training samples by an optimizer with the aim of minimizing the loss score of the difference between the predicted and actual outputs.

Tune Hyper-parameters

Raw Data  Pre-processing  Split Data

=, |

unsatisfactory|

Best Real World Metric
Model [ ® Performance Scores
Selection Evaluation

Fig. 3. Illustration of a workflow to build a Deep learning model. The raw data is pre-processed and afterwards split to train, validation, and test sets. The training data is used to
train a model while validation data evaluate model performance and aid to tune hyper-parameters. Finally, the best model is evaluated over unseen test data to estimate real-world

performance.

hidden layers, which normally includes dimensional reduction. An al-
ternative is an auto-encoder output layer, which allows for an increase
in dimensionality via a decoding function (generally with the aim of
reflecting a processed input layer).

A deep learning network automatically learns appropriate features
for a problem as well as learning the desired output. This property
distinguishes DL from other ML techniques which rely on expert-
informed feature engineering of the data to achieve accurate learning.
A deep network learns features and outputs by adjusting its parameters
using a cost function to assess how well or poorly a DL algorithm
performs with respect to the actual training output and the predicted
results, through a technique called back-propagation. In this technique,
the model first processes an input to produce an output, which is then
compared with the desired output and an error score is computed.
The error score information is then passed back for the next round of
training which updates neuron weights in an effort to reduce the error
score (see Fig. 2). Searching for a minimal error score can be achieved
with the aid of gradient descent optimization strategies (Rumelhart
et al., 1986). Computation of gradients for every training sample often
demands large computation time, therefore for practical purposes, a
variant, Stochastic Gradient Descent, that only utilizes a subset of sam-
ples for gradient computation, is used. Generally, multiple traversals of
training data, known as epochs, lead to acceptable training convergence
to an accurate deep learning model. However, vanishing gradient and
exploding gradient problems may occur when gradient descent fails to
converge.

2.3.1. Deep learning workflow

A typical workflow to build a deep model with a reasonable estimate
of performance over unseen data consists of several steps (Chollet,
2021). It includes data pre-processing, data splitting, training, and
model evaluation over the unseen data set as illustrated in Fig. 3. The
four key steps are discussed below in detail.

(1) Data pre-processing. Raw data is seldom suitable to be directly
consumed by the training loop of a deep model. Therefore, it is often
necessary to pre-process raw data. This may demand review and in-
terpretation from field domain experts. At a simplified level, it serves
two primary goals i.e., data cleaning and feature scaling. During data
cleaning, the treatment of outliers is an important decision. They are
often filtered via data imputation. However, filtering can potentially
impact the reliability of data. Feature scaling refers to the normaliza-
tion / standardization operations that encourage a similar spread of
different feature distributions. It is known that features with relatively
different scales can pose a challenge to the optimization algorithms and
may result in slower convergence (Bengio, 2012).

(2) Data splitting. Given a clean data set, the next steps include par-
titioning the data to train, validation, and test splits. These data splits
enable us to train and find the model hyper-parameters and estimate
the model’s generalization performance. This division requires careful
treatment such that each split represents the same underlying data
distribution. Therefore, it is a relatively complicated task to split a time
series data set when the data is scarce. A naive split in time (also known
as fixed partitioning) may result in very different distributions of the
train, test, and validation split that can potentially result in sub-optimal
performance (Alvi et al., 2022b).

(3) Training loop. This is the core part of the deep learning pipeline.
It is broadly comprised of two parts, i.e., network design and model
parameters. Network design refers to different design choices of neural
network architectures - hyper-parameters. This includes the choice
of neuron type, number of layers and number of neurons in each
layer, learning rate, and activation functions. The hyper-parameters
can be either manually set via trial and error or searched via Bayesian
Optimization and evolutionary algorithms. Once the network design is
completed, the model weights are optimized to perform the desired task
accurately. The process of iteratively changing model weights is called
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training. It is guided by the quality of model performance, estimated
using different evaluation metrics. For simplicity, we deliberately de-
fer the discussion of evaluation metrics to the next step. The model
weights are learned directly from the training data with the aid of
back-propagation-based optimization techniques. During the training
phase, a validation set is also utilized to avoid over-fitting the model
to the training set, and further, it also assists in the selection of hyper-
parameters. Once the best-performing model is identified based on the
train and validation splits, it is ready for performance evaluation over
an unseen test data set.

(4) Model evaluation. Evaluation of a model refers to quantification of
model performance. In developing a deep learning model, it is itera-
tively performed during all phases, i.e., training, validation, and testing.
During training, the model is evaluated over train and validation splits
to make updates in the hyper-parameters of the model. Evaluation
over a test set yields test error or generalization error. This estimates
the expected performance of the model over unseen data set i.e., gen-
eralization performance. It is noteworthy that the generalizability of
a model is evaluated on the assumption that training set and the
test set are drawn from the same probability distribution. Describing
the desired behavior mathematically or numerically is a challenging
process, and often, simplified and intuitive definitions are used. In the
case of regression, root means square error (RMSE), mean absolute
error (MAE), and the coefficient of determination (R?) may be selected
depending on model goal. This contrasts with mechanistic modeling,
where R? is commonly most suitable as objective function, due to
the desire to conduct inferential statistics on model and parameter
quality (Dochain and Vanrolleghem, 2001). Similarly, for classification
models, accuracy, recall, precision, and F1-score are used. Practically,
instead of relying on one single metric, a combination is used to identify
the best model.

2.3.2. Machine learning methods

ML problems where both input and expected output data is available
for learning are called supervised learning problems. In contrast, in
unsupervised learning the network learns patterns and structures in the
data but there is no ground truth of the ‘correct’ output.

Supervised learning. In supervised learning, the computational model is
fed with two sets of data: an input vector, and the observed output,
indicating the ground-truth (observed) data. Examples of supervised
learning in wastewater treatment include predicting outlet ammonia
based on inputs like flow, ammonia, and COD. Another example is clas-
sifying wastewater influent into domestic, municipal, or industrial cate-
gories based on various quality variables. The learning process involves
solving an optimization problem using gradient descent algorithms.

Unsupervised learning & semi-supervised learning. In contrast to super-
vised techniques, unsupervised learning techniques do not require
training labels. Instead, they endeavor to discover latent patterns or
subgroups in the input data. Thus, they are naturally suitable for
exploratory data analysis (Han et al., 2011). Some common applica-
tions include clustering, association rules, dimensionality reduction and
anomaly detection (Pang et al., 2021). Similarly, in the semi-supervised
learning, the algorithm learns from data where only some samples are
labeled.

Deep reinforcement learning (DRL). In reinforcement learning (RL), a
reward/penalty approach is used to learn the best strategy (policy)
for taking a certain action given a particular state. It is often formu-
lated as a Markov decision process whereby an agent perceives the
information in a state space, acts on the environment that results in
a new state (transition) and receives a scalar reward as a feedback
on that action. This theory’s combination with deep learning archi-
tectures, as approximators for the value or policy function, gives rise
to deep reinforcement learning (Seo et al., 2021). Deep RL approaches
are generally categorized as model-free and model-based methods. In
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model-free, an agent learns a policy through direct interactions with
the environment and makes decisions by trial and error. While, in
model-based deep RL, an internal model of the environment is utilized
that allows an agent to plan a trajectory of actions, leading to the
desired goals. For WWTPs, model-based methods can be potentially
utilized for robust control purposes where the agent represents the
model predictive control (MPC) (Ocampo-Martinez, 2010).

Model and hyper-parameters. In designing a machine learning solution,
there are many design decisions. Among these, the choice of appropri-
ate model architecture is important. This often depends on the modality
of the data. For instance, a recurrent neural-inspired architecture can
process sequential data systems more appropriately, while a convolu-
tional neural network is more suitable for images. For a model design,
there are generally two kinds of parameters, namely, model parameters
and hyper-parameters. The model parameters refers to variables such
as model internal parameter weights, which are learned automatically
from the data using optimization strategies. Whereas hyper-parameters
refers to design variables that are external to the neural network
and includes variables such as learning rate, decay rate, momentum,
optimizer, number of hidden layers, and size of different layers. These
variables are often fine-tuned through manual iterations, but occasion-
ally a computationally intensive brute-force search is employed (Snoek
et al., 2012).

2.3.3. Key deep learning structures

As noted above, to a large degree, neuron types and activation
functions are simple and somewhat generic, and models are largely dif-
ferentiated in function and application by their structure. This section
provides a brief overview of different types of relevant neural networks
structures. For further details and potential use cases for wastewater
systems refer to the supplementary material.

RNN (Rumelhart et al., 1986) is a specialized type of architecture
to cater sequential or temporal data. They are distinguished from other
types of neurons by inclusion of ‘memory’ that enables previous inputs
to influence the outputs in future. Some popular RNN architecture
includes LSTMs, Gated Recurrent Units (GRUs) and their bidirectional
flavors. In contrast with RNNSs, recently, a new type of architecture
called ‘Transformers’ (Vaswani et al., 2017) has demonstrated state-of-
the-art performance over sequential data. The model has an attention
based mechanism that enables better generalization than the RNNs
alongside a faster acceleration over the graphical processing units.

Convolutional neural networks (CNNs) is another popular architecture
that is widely used to handle structured data sets like images. At its
core, it performs a convolutional operation i.e, sliding spatial filters
across the input to produce a feature maps. The learned feature maps
are then used for a variety tasks including classification, segmentation
and detection.

A rich class of deep learning algorithms includes schemes that can
learn to produce new samples of some modality such as images or
text. Some of the popular architectures include Generative Adversarial
Networks (GANs), Auto-encoders (AEs) and Diffusion Models. At a high
level GANs (Goodfellow et al., 2014) consist of a pair of neural net-
works that are engaged in a competitive interplay, such that one aims
to produce high-quality data that other tries to discriminate it from
real data. In contrast, Diffusion models (Ho et al., 2020) are inspired
from Markov chains that learn by iteratively adding noise to the data
and then gradually removing it in a reverse process. Similarly, the
‘Auto Encoders’ work by learning an identify function. This is often
achieved by constraining the model to learn a smaller dimensional
hidden distribution.
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Table 1
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Comparison of modeling approaches.

Mechanistic

Based on biochemical dynamic mass balances

Advantages

Mature field with standardized models and software support.
Better prediction on unfamiliar scenarios.
Can be applied in scaled approach (time and space).

Disadvantages

Requires knowledge of underlying mechanism (expert knowledge).
Complex equations and can be computationally intensive.

Many parameters (commonly cannot be exhaustively fit).
Requires numerical solver.

Requires specific monitoring and analytical campaign.

Empirical

Learn relationships between inputs and outputs without explicit modeling of the underlying system.

Advantages

Computationally very cheap.

Does not require expert knowledge.
Not restricted to large data sets.
Limited parameter count.

Disadvantages

Need to engineer suitable features of the data for effective learning.
Can only represent a limited group of I/0 relationships.
Black box model: provides no insight into processes.

Deep Learning

Use multiple layers to learn complex relationships between inputs and outputs.

Advantages Not dependent on selection of specific features and outputs (can use available process data).
1/0 can be categorical or continuous.
Disadvantages Black box model: provides no insight into processes.

Large number of parameters and hyper-parameters to tune, requiring expert knowledge.
Learning requires large data sets.

Learning is computationally expensive.

2.4. Hybrid modeling

Both mechanistic and DL models have advantages and disadvan-
tages as discussed earlier in this review. Mechanistic models are useful
for process design and simulation of the dynamic behavior of the
treatment plants but as noted above, development requires expert
knowledge and a set of assumptions in underlying mechanisms. Both
modeling approaches require field data, and potentially experimen-
tation, with (for example) mechanistic modeling requiring targeted
sampling (Corominas et al., 2018b), and machine learning being depen-
dent on relevant data. Both can benefit from appropriate experimental
design (Dochain and Vanrolleghem, 2001). Mechanistic models cannot
capture all behavior and require targeted data collection. In contrast,
DL models cannot be used for process scenario analysis where the
model has not received relevant data and DL models have higher
requirements for relevant data.

A hybrid approach offers opportunities that leverage the advan-
tages of both methodologies across a range of applications. In limited
wastewater data sets, mechanistic models can be used to augment the
data required for DL modeling. Schneider et al. (2022) conducted a
review of generalized empirical-mechanistic hybrid modeling, identi-
fying the general classifications (serial, parallel, and surrogate), and
the rapid emergence of ML techniques amongst empirical models. A
recent study has shown that using the ASM1 (Henze et al., 2000) to
augment the data sets led to an improved performance of DL models in
comparison to models that were trained with raw plant data (Li et al.,
2022). This increase in performance could also be explained by the
fact that the mechanistic model acted as a filter that removed inherent
noise in the data. Heo et al. (2021) demonstrated the combined use
of mechanistic modeling (i.e., BSM2) to generate objective function
outputs, together with a DL approach to optimize and map the out-
put space. Another important aspect of hybrid modeling could be to
apply the model developed with data from the mechanistic modeling
through transfer learning. There is a need to investigate the potential
of DL complementing engineering modeling approaches for designing,
managing, monitoring and predicting wastewater treatment processes,
particularly for real-time optimization for the recovery of clean water,
energy, and nutrients. Table 1 presents a comparison of the three major
modeling approaches.

3. Deep learning applications in wastewater treatment processes

Over the last few decades, mechanistic modeling has been the
dominant approach for describing physico-chemical and biological pro-
cesses taking place in wastewater treatment systems (Mannina et al.,
2016). Mechanistic models such as the International Water Associ-
ation (IWA) ASM series and ADM1, while very efficient in design
and simulation, do not readily support analysis of complex systems
in data rich-environments but instead rely on controlling mechanisms.
However, in recent years, data-driven modeling approaches, in partic-
ular DL, have been rapidly-growing within the wastewater industry
and are employed for a wide range of purposes. Representative ap-
plications of DL include predicting performance, process control and
automation, soft sensing, fault-detection, diagnosis and missing data
imputation. WWTP studies have used various deep learning algorithms:
RNN, LSTM, Bi-LSTM, CNN, GRU,Bi-GRU, deep VAE (deep variational
autoencoders), DBN, DRL, and GANs and hybrid methods. The technical
details of the algorithms of these techniques are discussed in Section 2.
This section focuses on the applications of deep learning techniques
employed in wastewater treatment systems.

3.1. Process simulation

In the wastewater industry, there is an increasing need to im-
prove the performance of treatment processes in response to stringent
safety and environmental regulations. DL methods are emerging as
efficient tools for predicting key performance and effluent quality vari-
ables. DL offers the potential to model wastewater processes without
the need for underlying mechanistic principles and account for their
non-linear nature, thus driving its adoption in activated sludge and
anaerobic digestion systems. Studies on DL approaches have focused
on predicting the performance and effluent quality in WWTPs. These
include predicting variables such as total nitrogen (7T'N), total chemical
oxygen demand (COD), soluble COD, biochemical oxygen demand
(BOD) (Cheng et al., 2020), ammonium (NH,-N) (Alvi et al., 2022b)
and nitrate (NO5-N) (Guo et al., 2015), total phosphorous (TP) (Yaqub
et al., 2020), sludge bulking (Bagheri et al., 2015) and removal effi-
ciency of total suspended solids (El-Rawy et al., 2021), effluent quality
and biogas production (Kazadi Mbamba and Batstone, 2023).

The most widely studied DL approaches in wastewater treatment
prediction are supervised learning techniques such as LSTM, RNN,
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GRU, CNN, and Bi-LSTM (Cheng et al., 2020; Guo et al., 2020; Kang
et al., 2020; Pisa et al., 2019; Qiao et al., 2012; Wang et al., 2019).
Of these, GRU has been shown to be more efficient in terms of con-
vergence, while LSTM networks have proven to have higher predictive
capabilities for wastewater treatment systems (Cheng et al., 2020).
Other studies have combined deep learning models. In this approach,
the first method, such as CNN, is used to automatically extract the local
features of each independent timestamp in the data and encode them,
whereas the second method is used to represent the global sequential
features based on the local feature encoding. Combined methods have
been shown to outperform single methods. For instance, the predic-
tion results of a hybrid CNN-LSTM prediction model showed higher
accuracy and better prediction performance than stand-alone CNN or
LSTM models (Guo et al., 2020; Wang et al., 2019). Similarly, Alvi
et al. (2022b) proposed ‘GRUconv’ a combined model that exploits the
strengths of GRU to extract global long-term temporal features and
CNN to facilitate learning of localized short-term trends the sensor time
series. The ‘GRUconv’ model outperforms state-of-the-art DL. models.

DL studies have also have explored other aspects of wastewa-
ter treatment such as optimization of methane production (Qdais
et al.,, 2010), quantification of long-term N,O emissions from full-
scale wastewater treatment plants using LSTM (Hwangbo et al., 2021),
forecasting of influent flow with historical flow and meteorological
data (Kang et al., 2020; Oliveira et al., 2020), and energy consumption
optimization in activated sludge systems (Oulebsir et al., 2020; Wang
et al., 2020a). These studies have indicated that deep learning models
are essential for identifying both opportunities for improvement as
well as causes of poor performance within wastewater systems. For
example, the study by Oliveira et al. (2020) demonstrated that a hybrid
deep learning model combining LSTM and a convolutional neural net-
work (CNN) was effective in accurately forecasting influent flow rates,
enabling optimal treatment process control and reducing operational
costs. Similarly, the study by Hwangbo et al. (2021) developed a
model for predicting N,O emissions from wastewater treatment plants,
highlighting the importance of incorporating long-term data for more
accurate predictions. These studies demonstrate the potential of DL
methods to address various challenges in wastewater treatment and
improve its overall efficiency and sustainability.

In recent years, transfer learning techniques have been to overcome
the issue related to data scarcity in WWTPs. Promising results have
been achieved by using a pre-trained DL model to simulate a differ-
ent but related system. For example, the usefulness of transfer learn-
ing based on GDBN was demonstrated for predicting total phospho-
rus in the effluent using a real-world wastewater case system (Wang
et al., 2020a). Similarly, a pre-trained uni-variate CNN model was used
for forecasting energy consumption of WWTPs with satisfactory re-
sults (Oliveira et al., 2021). Transfer learning has shown great potential
in leveraging knowledge from existing data to enhance the performance
of DL models in new and under-studied domains such as WWTPs.

DL has also been applied to classification tasks in microscopy anal-
ysis of activated sludge (AS) flocs to provide insight about the AS
properties that impact on the performance of AS systems. Satoh et al.
(2021) developed a CNN-based approach, using a pre-trained image
classification neural network (i.e., inception architecture for computer
vision), to automatically classify AS flocs in full-scale WWTPs based
on morphological properties. The CNN model was trained and tested
with approximately 13,000 images of AS flocs and achieved a 95
percent accuracy in recognizing aggregated or dispersed flocs and
the presence or absence of filamentous bacteria. This classification
model has potential as an early warning system to identify settleability
deterioration and the abundance of filamentous bacteria in the aeration
tanks of a full-scale AS system. However, the model architecture is
highly complex with more than 22 deep layers and requires more
computational resources, though it has similar predictive capabilities
as the regression DL models.

Water Research 245 (2023) 120518

Unsupervised methods have gained traction in the prediction of
key performance variables in wastewater treatment systems. Niu et al.
(2020) employed a genetic-deep belief network model to forecast the
COD and SS in the effluent of pulp and paper mill wastewater treat-
ment. Their study also used a genetic algorithm to reduce the in-
put variable dimensionality and simplify the network architecture. In
addition, Asadi and McPhedran (2021) utilized GAN to estimating
greenhouse gas (GHG) emission rates and augment data in domestic
wastewater treatment. Another unsupervised method, based on partial
least squares and deep belief network (PLS-DBN), was employed by Han
and Zhang (2017) for multi-step ahead permeability forecasting in
membrane bioreactors, allowing early detection of fouling and pol-
lution risks. PLS-DBN exhibits strong learning and feature-extracting
capabilities, enabling its application for nonlinear system modeling and
identification, with notable improvements in water quality prediction
compared to single-layered neural network compared to single layered
neural networks (Qiao et al., 2018).

Overall, DL techniques have proven to be powerful tools for process
simulation tasks such as predicting key performance variables and
identifying opportunities for improvement in wastewater treatment sys-
tems. Supervised learning techniques such as LSTM, RNN, GRU, CNN,
and Bi-LSTM have been widely used for regression tasks with time-
series data sets. Transfer learning and unsupervised learning methods
have also been applied to overcome data scarcity issues and for predic-
tion of other key performance variables. Moreover, DL has also been
used for classification tasks in microscopy analysis of the morphology
of activated sludge flocs. These studies have shown that DL models
have the potential to identify opportunities for improvement as well as
causes of poor performance within wastewater systems. As the field of
DL continues to advance, it is expected that more sophisticated models
and techniques will emerge to address the challenges and limitations
of current methods, making DL an even more indispensable tool for
sustainable wastewater management.

3.2. Process control and optimization

The field of process monitoring and control in wastewater treat-
ment has been well-established for many years, relying on basic con-
trollers like PID and digital, as well as mechanistic models for test-
ing (Olsson and Newell, 1999). Common parameters targeted for con-
trol include NH,-N, NO;-N, PO,-P, pH, temperature, and methane
concentration. However, with the emergence of new paradigms in
resource recovery and the advancement of data mining techniques
based on DL, this field is rapidly expanding. These developments are
leading to new opportunities for process monitoring and control in
wastewater treatment.

Both supervised and unsupervised DL methods are increasingly
being used in process control and automation. For instance, Filipe et al.
(2019) proposed a control method that combined deep reinforcement
learning using Proximal Policy Optimization for optimizing energy con-
sumption in wastewater pumping stations. Similarly, Seo et al. (2021)
developed a deep reinforcement learning-based control scheme for re-
ducing the energy consumption and energy cost of pumping systems in
WWTPs. This control scheme accounted for the constraints of an on/off
pumping system through a designed reward function and demonstrated
good performance and robustness in closed-loop systems treating in-
dustrial wastewater, as observed by Zhuang et al. (2018). Addition-
ally, Qiao et al. (2012) demonstrated that an RNN-based multivariate
control system applied to BSM1 for controlling the dissolved oxygen
(DO) concentration, NO concentration and mixed liquor suspended
solids (MLSS) concentration showed a better performance compared to
a traditional PID controller. These studies demonstrate the potential
of DL in improving process control and automation in wastewater
treatment.

DL techniques can be applied in WWTPs for nutrient removal and
energy conservation using MPC. MPC is a widely used industrial control
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strategy that optimizes control actions of a system in real-time. The
MPC approach typically involves a control target, a system model,
and an optimization process that determines the optimal inputs re-
quired to achieve the desired plant performance. In the past, linear
space models have been used to develop MPCs for wastewater treat-
ment systems, even though such systems are highly nonlinear and
dynamic (Corominas et al., 2018a). However, recent advances have
enabled the development of nonlinear dynamic process models for
optimal control of these systems.

DL methods are also becoming popular for nonlinear system iden-
tification and modeling, and hence have been applied to MPC in
wastewater treatment. By designing an MPC based on DL, it is possible
to optimize the plant responses over a specified time horizon, while
simultaneously simplifying the objective function to reduce the com-
putational requirements of the optimization. Despite recent advances
in DL-based MPC (Kumar et al., 2018), this approach is still in its
early stages of application in the wastewater industry. A DL-based MPC
has been proposed for a continuous stirred tank reactor (Wang et al.,
2020a) . The proposed MPC consisted of a growing deep belief network
(GDBN) and an optimal controller. Due to its higher learning speed,
GDBN was used for system identification, providing a predictive model
of the controlled system. This study also used a quadratic gradient
descent optimization and demonstrated better tracking control perfor-
mances than other state-of-the-art MPC methods without DL dynamics.
Practical implementation of DL-based MPC for wastewater systems
requires improvements in system identification and reductions in the
computational requirements to solve the optimization problem online
or in real-time. As the field continues to advance, it is expected that DL-
based MPC will become increasingly prevalent in the water resource
recovery industry for optimizing wastewater treatment processes and
reducing energy consumption.

Transfer learning is still in its early stages of implementation, but
there is a growing interest in applying it to process control in wastewa-
ter treatment systems. Transfer learning allows control strategies devel-
oped for one system to be transferred toanother system with ease. For
instance, a LSTM-based proportional-integral (PI) controller to improve
the conventional PI controller was implemented to improve the con-
ventional PI controller strategies for maintaining the concentration
of DO at 2 mg/L in an aerobic tank of a simulated WWTP based
on the Benchmark Simulation Model 1 (BSM1) system (Alex et al.,
2008). Once developed, the controller was transferred to DO control
in the remaining aerobic tanks, without substantial modification of
the hyperparameter values and neural architecture of the pre-trained
LSTM network (Pisa et al., 2021). Results show that the adoption of
this transfer learning-based technique can allow for the development of
new control loops with less effort, without requiring substantial knowl-
edge of the processes being controlled, and with improved control
performance compared to conventional PI control structures. How-
ever, further research is needed to investigate the potential of transfer
learning in process control of wastewater treatment systems and to
determine the limitations of this approach.

3.3. State estimation and soft sensing

One of the major challenges in optimizing the operation of biolog-
ical wastewater treatment processes is the lack of online sensors to
provide direct measurement of key parameters, such as the microbial
concentrations in activated sludge which are vital for managing the
process. State estimation and soft sensing are two approaches used
in process control to estimate such variables that are difficult or im-
possible to measure directly (Yan et al., 2021). The purpose of state
estimators or soft-sensors is to provide a double check, or even a
replacement for physical sensors (Haimi et al., 2013).
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3.3.1. State estimation

State estimation involves using mathematical models and measure-
ments of other variables to estimate the values of unmeasured variables.
It is based on the principle that the behavior of a system can be
predicted based on its current state and the inputs that it receives.
The estimated values of the unmeasured variables are used to improve
the control of the system. This is important because the complete
state of a wastewater treatment system is only partially observable
and state estimation is useful to determine the underlying dynamic
behavior of such a system. State estimation allows for improved process
monitoring, fault detection and diagnosis and development of enhanced
control strategies.

The methods for state estimation used today are normally based on
using first principles techniques (Kadlec et al., 2009). These include
state observers, Kalman Filter, the extended Kalman filter, unscented
Kalman filter, particle filtering and moving horizon estimator (Jones
et al., 1989; Fortuna et al., 2007; Welch et al., 1995). Such models
describe the physical, chemical and biological processes and compute
the values of states of interest on the basis of these mathematical formu-
lations. For example, Jones et al. (1989) implemented a state estimation
using extended Kalman filter for online tracking of unmeasured process
states through a simulation applied to a high rate anaerobic diges-
tion system. In this study, the algorithm of state estimation coupled
available process measurements, and an adequate mechanistic dynamic
model. Prediction and modeling of the major sources of stochastic
disturbances was able to track several key unmeasured variables. How-
ever, the use of first principles models is prohibitive due to the cost
of developing high-fidelity models, which include detailed description
of all physicochemical and biological processes affecting the dynamics
of treatment systems. However, the burden of developing high-fidelity
mechanistic models limits the use of first principles models due to high-
degree complexity and non-linearity in wastewater treatment systems.
Alternatively, a surrogate model which approximates the dynamics of
wastewater treatment systems may be used to design extended Kalman
filters for state estimation (Yin and Liu, 2018), at the expense of model
prediction accuracy. Since DL models do not require prior knowledge of
the system dynamics, their capabilities for state estimation and system
identification have also been investigated for control applications in
robotics (Talebi et al., 2009), but there is currently no application to
wastewater treatment processes.

3.3.2. Soft-sensing

On the other hand, soft sensing involves the use of data-driven mod-
els such as neural networks or support vector machines to estimate the
values of unmeasured variables based on the available measurements.
Unlike state estimation, soft sensing does not rely on mathematical
models of the system. Instead, it uses historical data to build a model
that can predict the values of unmeasured variables.

DL is increasingly being used for soft-sensing of key variables for
process monitoring to ensure operational excellence in wastewater
treatment. One of the advantages of DL in developing soft sensors
is that the model continually learns with new data. Soft sensors or
software/virtual sensors are models that can infer the values of pro-
cess variables that are otherwise difficult and costly to measure with
Sensors.

A growing number of researchers have developed soft sensors using
DL methods and their studies have shown that such methods are ca-
pable of predicting major trends in the concentrations of key variables
with a high degree of accuracy. For example, soft sensors have been
developed for key variables such as NO;-N, TN, NH,-N, PO,-P, TP,
BOD, COD and SS (Cheng et al., 2020; Pisa et al., 2019; Qiu et al., 2016;
Wang et al., 2021). More recently, a NH, soft-sensor was developed
based on ‘GRUconv’ model by coupling sequential modeling GRU to
capture global trends and CNN kernels to facilitate learning of local
behaviors (Alvi et al., 2022b). Effectiveness of this hybrid network
was demonstrated using real-world data from a two-stage (high-rate
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anaerobic followed by high-rate algal treatment) pilot wastewater treat-
ment plant with excellent outcomes. This study also demonstrated that
DL-based soft-sensors are cost-effective in comparison to traditional
sensors. In Alvi et al. (2022a), two soft sensors were developed to
approximate NH,-N, and NO,-N in real time using limited data. Trans-
fer learning was leveraged to address the data scarcity issue in this
paper, which proposed a method called AET L (autoencoder transfer
learning). In this method an LSTM autoencoder is used to systematically
augment the target domain data and generate synthetic samples that
closely follow the target domain distribution. The synthesized data is
then used to train a source model, which is fine-tuned with real-world
data from the target domain to create a more generalizable DL model.

Both state estimation and soft sensing have emerged as promis-
ing techniques for estimating difficult-to-measure process variables in
wastewater treatment. The studies above demonstrate the potential
of DL algorithms for improving state estimation and soft sensing by
providing accurate estimates of process variables, allowing for better
process control and optimization.

3.4. Data pre-processing

Pattern discovery through DL in in wastewater industry data
presents significant challenges that need to be addressed to improve
decision-making and process performance. These challenges include
high-dimensionality of the data, process uncertainty and dynamics, as
well as variations sampling time among variables (Corominas et al.,
2018a). In addition, raw process data are often suffer from errors and
have missing values caused by disturbances and sensor faults (Alvi
et al.,, 2022b). These issues can result in incorrect control response,
misinterpretation of data, and can negatively impact the performance
of machine learning models.

To overcome these challenges, a well-designed machine learning
methodology should incorporate additional steps to ensure the accuracy
and reliability of the data. Quality assurance becomes critical in identi-
fying inconsistencies and anomalies within the data requiring activities
such as missing data imputation and noise removal for effective data
cleaning.

DL methods are increasingly being advocated for fault detection,
diagnosis and missing data imputation in WWTPs. One example is
the use of LSTM-based methods, which have demonstrated superior
fault detection capabilities compared to traditional sensors. In a study
by (Mamandipoor et al.,, 2020), LSTM-based methods achieved a
fault detection rate exceeding 92%, enabling timely identification of
collective faults. Transformer-based models have also emerged as a
powerful approach for fault detection in wastewater treatment pro-
cesses. Peng and Fanchao (2022) proposed a transformer-based model
that incorporates position encoding, residual connections, and multi-
head attention mechanisms. The empirical evaluation of their approach
on the BSM1 model showcased significantly lower false alarm and
missed alarm rates compared to state-of-the-art methods like PCA and
support vector machine (SVM) approaches.

Unsupervised DL approaches such as DBN combined with one-class
SVM have proven effective for fault detection. Additionally, deep varia-
tional autoencoders (VAE) based on residual neural networks (ResNet)
were applied for missing data imputation and sensor self-validation (Ba-
Alawi et al., 2022). The integration of ResNet-VAE frameworks offers
advantages in extracting complex features from membrane bioreac-
tor data and overcoming vanishing gradient issues. The VAE-ResNet
approach exhibited improved performance in detecting and recon-
structing faulty sensors, as well as imputing missing values. with mean
absolute percentage errors (MAPE) varying between 3.98% to 10.44%.
However, it should be noted that while ResNet has excelled in classi-
fication and computer vision tasks, its computational resource require-
ments, primarily due to its deep structure, raise concerns about its
feasibility in simple regression tasks such as those found in wastewater
systems. Another proposed approach for anomaly detection in WWTPs
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is the coupling of RNN and Restricted Boltzmann Machines (RNN-RBM)
with classifiers, as highlighted by Dairi et al. (2019).

These DL techniques offer promising avenues for enhancing fault
detection, diagnosis, and missing data imputation in the wastewater
industry. Continued research and development in this area can lead to
more accurate and efficient decision-making processes within WWTPs.

3.5. CFD modeling and deep learning

Computational fluid dynamics (CFD) is a powerful tool for simu-
lating fluid flows in the water industry, but its high computational
cost limits its for iterative applications such as iterative CFD-assisted
design. To address this issue, a hybrid approach that combines tradi-
tional CFD with machine learning techniques has been proposed. By
mapping expected outputs and providing design candidates at relatively
low computational costs, this approach has been successfully applied
in other fields such as mechanical and aeronautical engineering (Ham-
mond et al., 2022). However its applications in the water industry is
still limited. In recent years, deep learning, a subset of machine learn-
ing, has gained popularity in the water industry due to its ability to
learn complex relationships from data. The combination of CFD and
deep learning has the potential to revolutionize the design and up-
scaling of bioreactors in the water industry, allowing for more efficient
and cost-effective solutions. While this approach is still in its infancy,
it holds great promise for the future of water treatment and resource
recovery.

4. Discussion and needs analysis

This section identifies opportunities for DL in WWTPs and possible
directions for this emerging field to benefit wastewater designers,
operators and researchers. We then discuss key challenges for DL in
the particular context of wastewater treatment-related tasks.

4.1. Value of deep learning for wastewater treatment

As noted in the previous section, DL has been applied in the wastew-
ater sector for prediction, predictive control, soft sensing, and fault
diagnostics (Alvi et al., 2022b; Cheng et al., 2020; Pisa et al., 2019;
Mamandipoor et al.,, 2020). Table 2 summarizes cited references,
showing the methods that have been applied and the WWTP prob-
lems addressed. Despite their prominence and potential success, it is
important to note that these models are application and case specific.
The characteristics of WWTPs can vary depending on geographic re-
gion and underlying treatment processes. As a consequence of this
heterogeneous behavior, for each application a new model needs to be
developed. The latest advances in deep learning technologies provide
new techniques to transfer learning from existing trained models to
data from same/other plants. For instance, transferring knowledge from
one trained LSTM-based PI controller to another different control loop
in a WWTP (Pisa et al., 2021).

There are many aspects of deep learning that could be fruitful
for the wastewater industry, such as end-to-end learning with the
capability of handling complex and multi-modal data. For example,
in a typical WWTP, data is generated from multiple sources such as
cameras, microscopic images, sensor probes, laboratory test and even
structured text records for maintenance and plant management. A DL
model can gain knowledge and actionable insights from complex, high-
dimensional and heterogeneous biochemical data. Multi-modal data
fusion can provide complementary information due to its dependence
on variable acquisition parameters (Wang et al., 2020b). This capability
means that previously un-utilized information from a WWTP may prove
to be useful for learning accurate decision support systems. Multi-
modal data fusion examples can be seen in core computer science
literature (Ngiam et al., 2011), but not in the wastewater domain.
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Table 2
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Overview of deep learning approaches and their applications in WWTPs. Highlighted cells note examples of published studies where
an architecture is applied to a certain problem type. Applications of State Estimation does not yet have WWTP case studies. Refer to

the table of nomenclature for acronyms.

Application in WWTPs

Process Process Soft Data
Architecture Simulation Control Sensing Quality
FFNN - - Alvi 2022a -
RNN - Qiao 2012 Chang 2021 Dairi 2019
(Bi)LSTM Cheng 2020 Pisa 2019 Pisa 2019 Mamandipoor 2020

Wang 2019 Pisa 2021 Alvi 2022b

Oliveira 2021 Guo 2020 Cheng 2020

Kang 2020 Kumar 2018

Hwangbo 2021

Yaqub 2020

El-Rawy 2021
(Bi)GRU Cheng 2020 - Alvi 2022b -

Oliveira 2021 Cheng 2020
CNN Satoh 2021 Guo 2020 Alvi 2022b -

Wang 2019

Oliveira 2021
Hybrid Wang 2019 Guo 2020 Alvi 2022b -
Network Bagheri 2015
Transformer - - - Peng 2022
AE - - Alvi2022a Ba-Alwi 2022

Qui 2016 Alvi2022a

GAN - - - Asadi 2021
DBN Niu 2022 Wang 2020 - -

Hou 2017
RBM - - - Dairi 2019
DRL - Seo 2021 - -

Filipe 2019
Zhuang 2018

TL Wang 2020 Pisa 2021 Alvi 2022a Alvi 2022a

Oliveira 2021

4.2. Open problems for applying deep learning to wastewater treatment

Section 3 has discussed and summarized many promising appli-
cations that can benefit from advances in deep learning as listed in
Table 2. However, there are various challenges that have hindered
widespread adoption of these techniques in the wastewater industry.
This subsection will discuss some of the challenges and possible ways
to address them.

Lack of training data. The wastewater industry lacks large, public data
sets. This is due to the high cost in terms of time, resources, and
equipment required to collect the necessary measurements, need to
curate data, and obligations of authorities in terms of public safety.
However, we believe that DL will emerge as an important technique
for wastewater applications in the future because large data sets are be-
ginning to become available, given the availability of low-cost sensors
and wider uptake of IoT sensing systems. Some public data sets have
been recently introduced on data hubs such as Arcgis.? However, many
existing public data sets suffer from low frequency (daily) and lack
important metadata such as climate information. Available data sets
are derived from diverse types of wastewater treatment processes (Alvi
et al.,, 2022b; Kazadi Mbamba and Batstone, 2023), which reduces
their suitability for training specialized deep learning models. Data
logged from wastewater treatment processes may also lack annotations
(classification labels and context information) that are necessary to
train deep algorithms. Unlike domains such as image processing, data
annotation in wastewater requires domain expertise, and cannot be
performed using crowd-sourcing annotation tools such as Amazon Turk.

Training models with a limited data set is a challenging problem as
the data set can suffer from inherent problems. One well-known issue
is the problem of imbalanced data distribution (Longadge and Dongre,
2013; Chawla, 2009; Alvi et al., 2022b). Other problems include the

2 https://hub.arcgis.com/search?q=wastewater
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presence of non-recurring seasonal patterns and noise or anomalies in
the data. For instance, in a WWTP, a sensor may perform anomalously
due to physical problems, such as clogging, or a natural external pertur-
bation like rainfall. High rainfall can cause biological washout, or may
be diverted, perturbing main treatment plant performance. Although,
these events are rare, because of their significance to operations it is
important to predict the effect of such events. This emphasizes the
need for metadata and event logging to provide context. Addressing this
problem demands the development of algorithms that can generalize in
presence of skewed data.

Alternatively, a skewed data set can be augmented so it is more
suitable for DL. Alvi et al. (2022b) has proposed an algorithm that
divides the original limited skewed data, such that each data split has
a similar statistical distribution. That in turn enables training of deep
models with limited data and effectively provides fair evaluation of
the generalizability of the models. Other techniques that remedy im-
balanced data sets include SMOTE: Synthetic Minority Over-Sampling
Technique (Chawla et al., 2002) and cost-sensitive learning (Domingos,
1999; Zadrozny et al., 2003). In cost-sensitive learning, a cost matrix
is defined that has different penalties for misclassification with respect
to the majority and minority class samples.

Similarly, another body of research has tackled the limited data
issues by hybrid modeling based augmentation methods. In these tech-
niques, synthetic data is generated from mechanistic models and is used
alongside real-world data to improve performance of deep learning
models (Li et al., 2022). Recently, instead of mechanistic techniques,
deep generative models have been also explored for data augmentation.
The generative models are trained to learn real distribution of data and
afterwards leveraged to generate additional data samples (Asadi and
McPhedran, 2021; Alvi et al., 2022a). In Alvi et al. (2022a) autoen-
coder is employed for data augmentation within the transfer learning
paradigm. It is evident from these studies that these approaches not
only alleviate the data scarcity issue but also enhance the generaliz-
ability of predictive models. Relevant core machine learning literature
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also demonstrates that generative models produces high quality sam-
ples than traditional techniques and generally augmented data sets
improves performance of deep models. Transfer learning techniques
also have potential to induce effective predictive models with limited
data. However, both generative and TL approaches are relatively unex-
plored and need more attention for possible adoption in the wastewater
industry.

Model generalization. Model generalization is the ability of a learned
model to perform well on unseen data. It relies on the assumption that
the training data and the unseen test data are independently sampled
from the same underlying data distribution (Ben-David et al., 2010). In
the context of WWTPs, this assumption may not hold because of concept
drift and data drift. For instance, the minimal control over the feed to
the WWTPs often results in high system variabilities, such as changing
hydraulic loads, weather conditions, and complex biochemical phenom-
ena. Consequently, the system can behave differently than expected. In
addition, the treatment process may evolve in unforeseen ways, such
as changes in operating conditions, i.e., chemical dosing, temperature,
etc. These intricacies often create out-of-distribution scenarios for a
deployed model, and consequently, the models suffer from performance
loss (Lu et al., 2018).

The other factor that hinders the generalization of deep models is
open set recognition problems (i.e., a model trained on limited training
conditions). For instance, a model trained over data samples from
a treatment plant collected in dry weather conditions is most likely
to fail when it is tested over samples from wet weather conditions.
These factors can introduce additional distributional differences be-
tween the train and test data. In Alvi et al. (2022b), it was found
that deep learning models were unable to predict certain days, and
these were identified as wet or rainy days. Further analysis revealed
that the models lacked sufficient training data on rainy days, which
contributed to their poor performance in these cases. Thus, routine
capture and update of deep model parameters/design is an important
design and deployment practice. These factors are domain-specific, but
the rich body of literature in data augmentation, generative models like
GAN, diffusion models, and autoencoders can be explored for possible
benefits.

Model interpretation. Access to inner mechanisms and understanding
how outputs are determined are fundamental to model transparency
and reliability. It also inculcates confidence for deployment in practi-
cal settings. The classical machine learning models including decision
trees, k-means clustering, and support vector machines enable experi-
enced researchers to examine the process of decision making. However,
interpreting the results of a deep learning model is a daunting challenge
and an inherent difficulty related to ‘black box’ terminologies. This
challenges trust in the models, particularly in dynamic environments
like WWTPs. For instance, an incorrect or biased decision made by
predictive model in the wastewater industry can cause significant
economic and environmental harm.

Explainable AI aims to provide human understandable explanations
for the outputs of machine learning models. As this area is in its nascent
phase various research challenges exist. These include (i) the definition
of model explainability, (ii) the formulation of explainable algorithms
to assess model behavior and develop solutions to improve them, and
finally, (iii) the design of measures to evaluate the performance of
models in their explanation. Although there is a growing body of
articles in other application areas (Mokhtari et al., 2019; Lundberg and
Lee, 2017), this area has yet to be explored in the wastewater research
community. There are only a handful of works. For instance, Alvi et al.
(2022b) explored feature importance via its absence to understand its
role in model predictions. More formal evaluations are needed using
techniques such as SHAP (SHapley Additive exPlanations) (Lundberg
and Lee, 2017) to foster trust in the model’s output and enable informed
decision making.
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Preprocessing & hyper-parameters. Data pre-processing is an essential
step in developing deep learning models for prediction, fault detection,
and process control. However, most studies have not addressed the
issue of input variable selection, which is critical to optimal model
performance (Kazadi Mbamba and Batstone, 2023). A comprehensive
methodology for data pre-processing in the application of deep learning
in wastewater systems is required. In addition, deep learning algorithms
involve setting of many hyper-parameters. These include definition of
the architecture, type of neurons, and number of layers that need to be
set before training and testing. Presently, there is no standard system-
atic methodology for obtaining the best hyper-parameters. However,
we see an increasing interest in this direction (Kazadi Mbamba and Bat-
stone, 2023). More attention to this area may lead to improved model
performance, resource utilization, and generalization across different
data sets and tasks.

Model robustness. A deep model’s robustness to different types of noise
is a desirable property for practical deployment. In real world plants,
there are several perturbation sources including: internal sensor vari-
ance, external perturbations, and natural fluctuations in weather con-
ditions. It is important that model behavior remains stable under
these circumstances. Deep models developed for wastewater treatment
facilities that do not have an explicit notion of robustness during their
training phase are possibly prone to different sources of noise. This is
especially true for Gaussian and adversarial noise: a carefully designed
signal that can completely alter the behavior of a model (Yuan et al.,
2019a). An illustrative example in Alvi et al. (2022b) demonstrates that
simple changes in the input feature space have a drastic impact on a
model’s performance. Specifically, the model’s ability to predict am-
monium decreased by ~ 25% when only a single input feature pH was
altered by its mean value. In addition, adding a little Gaussian noise
to the input signal also deteriorates a model’s performance. Due to the
lack of robustness, Ba-Alawi et al. (2021) utilized a stacked denoising
autoencoder (SDAE) to reconcile faulty/noisy sensor data from a real
WWTP. Similarly, other noise injection training approaches (Yin et al.,
2015) and denoising diffusion models (Ho et al., 2020) can be explored
to enhance the robustness of deep models.

5. Conclusion

This article identifies broad applications of deep learning in wastew-
ater systems, including system representation, process control, soft
sensing, and data quality and aggregation. Further opportunities have
been identified in computer assisted design, exploration of design
spaces, and in hybrid modeling (mechanistic-empirical models). A num-
ber of practical challenges have been identified, including data quality
and quantity, the non-transparent nature of deep learning models, and
model robustness. In particular, DL requires a large volume of quality
samples that describe the empirical distribution of processes of interest.
While open data sets are becoming more available, the quality, range
of process variables, and particularly explanatory metadata to accom-
pany this is critical. DL also demands the development of advanced
algorithms to ascertain their robustness and methods are needed to
interpret the decision flow within neural networks. Additional research
directions include a robust and repeatable framework for feature selec-
tion and ability to transfer models between systems using both transfer
learning and use of mechanistic models for the same.
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